Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10, Problem 10.64P
Determine the rate of condensation on a 100-mm diameter sphere with a surface temperature of 150°C in saturated ethylene glycol vapor at 1 atm. Approximate the liquid properties as those corresponding to saturated conditions at 373 K (Table A.5).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Saturated, pure steam at a temperature of 170 oC condenses on the outer surface of a vertical tube of outer diameter 2 cm and length 1.5 m. The tube surface is maintained at a uniform temperature of 150 oC.
Calculate:
the local film condensation heat-transfer coefficient at the bottom of the tube.
the average condensation heat-transfer coefficient over the entire length of the tube.
the total condensation rate at the tube surface.
can you answer the question
AH of vaporization of water is 439.2 cal/g at the normal boing point. Since virus can survive at 404.39 K by forming
spores. Most virus spores die at 851.9 K. Hence, autoclaves used to sterilize medical and laboratory instruments are
pressurized to raise the boiling point of water to 851.9 K. Find out at what InP (torr) does water boil at 851.9 K?
O a. 8460.435
O b. 940.048
c. 1880.097
O d. 2.474
Chapter 10 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 10 - Show that, for water at 1-atm pressure with...Ch. 10 - The surface of a horizontal. 7-mm-diameter...Ch. 10 - The role of surface tension in bubble formation...Ch. 10 - Estimate the heat transfer coefficient, h,...Ch. 10 - Prob. 10.5PCh. 10 - Prob. 10.6PCh. 10 - Prob. 10.7PCh. 10 - Prob. 10.8PCh. 10 - Calculate the critical heat flux on a large...Ch. 10 - Prob. 10.11P
Ch. 10 - Prob. 10.12PCh. 10 - Prob. 10.13PCh. 10 - Prob. 10.15PCh. 10 - Prob. 10.16PCh. 10 - Consider a gas-fired boiler in which five coiled,...Ch. 10 - Prob. 10.18PCh. 10 - Prob. 10.19PCh. 10 - Prob. 10.20PCh. 10 - Prob. 10.22PCh. 10 - Prob. 10.24PCh. 10 - Prob. 10.25PCh. 10 - A small copper sphere, initially at a uniform,...Ch. 10 - Prob. 10.28PCh. 10 - A disk-shaped turbine rotor is heat-treated by...Ch. 10 - A steel bar, 20 mm in diameter and 200 mm long,...Ch. 10 - Electrical current passes through a horizontal....Ch. 10 - Consider a horizontal. D=1 -mm-diameter platinum...Ch. 10 - Prob. 10.34PCh. 10 - Prob. 10.35PCh. 10 - Prob. 10.36PCh. 10 - Prob. 10.37PCh. 10 - A polished copper sphere of 10-mm diameter,...Ch. 10 - Prob. 10.39PCh. 10 - Prob. 10.40PCh. 10 - Consider refrigerant R-134a flowing in a smooth,...Ch. 10 - Determine the tube diameter associated with p=1...Ch. 10 - Saturated steam at 0.1 bar condenses with a...Ch. 10 - Prob. 10.45PCh. 10 - Prob. 10.46PCh. 10 - Prob. 10.47PCh. 10 - Prob. 10.48PCh. 10 - Prob. 10.50PCh. 10 - Prob. 10.53PCh. 10 - The condenser of a steam power plant consists of...Ch. 10 - Prob. 10.56PCh. 10 - Prob. 10.61PCh. 10 - Prob. 10.62PCh. 10 - A technique for cooling a multichip module...Ch. 10 - Determine the rate of condensation on a 100-mm...Ch. 10 - Prob. 10.66PCh. 10 - Prob. 10.67PCh. 10 - Prob. 10.70PCh. 10 - Prob. 10.71PCh. 10 - Prob. 10.74PCh. 10 - Prob. 10.75PCh. 10 - A thin-walled cylindrical container of diameter D...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Assume the following vectors are already defined: V1=[302]V2=[214]V3=[5131]V4=[0.50.10.20.2] For each of the fo...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Determine the length of the cantilevered beam so that the maximum bending stress in the beam is equivalent to t...
Mechanics of Materials (10th Edition)
Locate the centroid of the area. Prob. 9-17
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
A windowmounted air conditioner removes 3.5kJ from the inside of a home using 1.75 kJ work input. How much ener...
EBK FUNDAMENTALS OF THERMODYNAMICS, ENH
17–1C A high-speed aircraft is cruising in still air. How does the temperature of air at the nose of the aircra...
Thermodynamics: An Engineering Approach
What types of polymers are most commonly blow molded?
DeGarmo's Materials and Processes in Manufacturing
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Water is to be boiled at atmospheric pressure in a polished copper pan placed on top of a heating unit. The diameter of the bottom of the pan is 00.2 m. If during 30 minutes the water level is dropped by 0.1 m, calculate the inner surface of the bottom of the pan. Assumptions 1 Steady operating conditions exist. 2 Heat losses from the heater and the pan are negligible 3 The boiling regime is nucleate boiling. Note. Write your answer step by step and clearly explain your work. You need to upload a file.arrow_forwardneed soon all parts don't copy I will downvotearrow_forwardAnalyze the condensation process using both chillers. Provide operating temperatures and pressures entering each component shown in the diagram (at points 1, 2, 3, 4). Indicate which chiller should be chosen based on the economics. See below for details: -Your work is replacing a chiller that is used as part of a distillation process that condenses methanol (boiling point = 65 °C). Your task is to select the most economical type of system. A conventional chiller will have a lower first cost and will have lower maintenance costs than one that involves enhanced heat transfer surfaces, but the chiller with enhanced surfaces will condense the same amount of alcohol with a lower energy consumption. Select the appropriate chiller by considering the net present value of both systems. That value will involve the first cost of the chiller, and the present value of the maintenance and energy costs. The chiller uses a standard vapor-compression refrigeration cycle with R-22 (see Figure 1). For…arrow_forward
- What do you mean by condensation? Explain in details.arrow_forward.All properties should be evaluated at the temperature of the steam.Saturated, pure steam at 65 ºC condenses on the surface of a vertical tube with outersurface diameter 2 cm which is maintained at a uniform temperature of 35 ºC. Determinethe tube length for a condensate flow rate of 5 x 10-3 kg/s.arrow_forwardDiscuss the technical points on pressure- temperature diagram for condensate gas reservoir and explainarrow_forward
- On a hot humid summer day, the air can be considered saturated steam at 950C. If you were to take an ice-cold beverage (40C) from the cooler, you would notice drop-wise condensation on the side of the can forming. What is the condensation heat transfer coefficient for the cold can? Assume the can is 12-cm tall and has a diameter of 8-cm.arrow_forwardPlease help me with the problem shown in the figure thanksarrow_forwardExplain the cooling effect of evaporation in terms of latent heat of vaporization.arrow_forward
- What is condensation and when does occurs? How does filmwise condensation differs from drop-wise condensation? Which type has a higher heat transfer film coefficient and point out the reason thereof?arrow_forwardi need the answer quicklyarrow_forwardDiscuss the assumptions made in the Nusselt’s theory of film condensation on a vertical plate.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license