Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
Chapter 10, Problem 10.24P
To determine
The critical heat flux for boiling water at 1 atm on a large horizontal surface on the surface of moon.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In boiling water at 1 atm pressure outside a stainless-steel tube with a surface temperature of 410F, the heat-transfer coefficient h in the absence of radiation is 32 Btu/h*ft^2*F. If the emissivity of the stainless steel is 0.8, will radiation significantly augment the rate of boiling (e.g., by more than 5 percent)? Assume that the vapor film is transparent to radiation and the boiling liquid is opaque.
Consider a hot dog being cooked in boiling water in a pan. Would you model the heat transfer to the hot dog as one-, two-, or three-dimensional? Would the heat
transfer be steady or transient? Also, which coordinate system would you use to solve this problem, and where would you place the origin? Explain.
Boiling water
Hot dog
What is boiling and when does occurs? Explain pool boiling. How does it differ from forced convection boiling?
Chapter 10 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 10 - Show that, for water at 1-atm pressure with...Ch. 10 - The surface of a horizontal. 7-mm-diameter...Ch. 10 - The role of surface tension in bubble formation...Ch. 10 - Estimate the heat transfer coefficient, h,...Ch. 10 - Prob. 10.5PCh. 10 - Prob. 10.6PCh. 10 - Prob. 10.7PCh. 10 - Prob. 10.8PCh. 10 - Calculate the critical heat flux on a large...Ch. 10 - Prob. 10.11P
Ch. 10 - Prob. 10.12PCh. 10 - Prob. 10.13PCh. 10 - Prob. 10.15PCh. 10 - Prob. 10.16PCh. 10 - Consider a gas-fired boiler in which five coiled,...Ch. 10 - Prob. 10.18PCh. 10 - Prob. 10.19PCh. 10 - Prob. 10.20PCh. 10 - Prob. 10.22PCh. 10 - Prob. 10.24PCh. 10 - Prob. 10.25PCh. 10 - A small copper sphere, initially at a uniform,...Ch. 10 - Prob. 10.28PCh. 10 - A disk-shaped turbine rotor is heat-treated by...Ch. 10 - A steel bar, 20 mm in diameter and 200 mm long,...Ch. 10 - Electrical current passes through a horizontal....Ch. 10 - Consider a horizontal. D=1 -mm-diameter platinum...Ch. 10 - Prob. 10.34PCh. 10 - Prob. 10.35PCh. 10 - Prob. 10.36PCh. 10 - Prob. 10.37PCh. 10 - A polished copper sphere of 10-mm diameter,...Ch. 10 - Prob. 10.39PCh. 10 - Prob. 10.40PCh. 10 - Consider refrigerant R-134a flowing in a smooth,...Ch. 10 - Determine the tube diameter associated with p=1...Ch. 10 - Saturated steam at 0.1 bar condenses with a...Ch. 10 - Prob. 10.45PCh. 10 - Prob. 10.46PCh. 10 - Prob. 10.47PCh. 10 - Prob. 10.48PCh. 10 - Prob. 10.50PCh. 10 - Prob. 10.53PCh. 10 - The condenser of a steam power plant consists of...Ch. 10 - Prob. 10.56PCh. 10 - Prob. 10.61PCh. 10 - Prob. 10.62PCh. 10 - A technique for cooling a multichip module...Ch. 10 - Determine the rate of condensation on a 100-mm...Ch. 10 - Prob. 10.66PCh. 10 - Prob. 10.67PCh. 10 - Prob. 10.70PCh. 10 - Prob. 10.71PCh. 10 - Prob. 10.74PCh. 10 - Prob. 10.75PCh. 10 - A thin-walled cylindrical container of diameter D...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 8.2 From its definition and from the property values in Appendix 2, Table 13, calculate the coefficient of thermal expansion, , for saturated water at 403 K. Then compare your results with the value in the table.arrow_forwardThe boiling temp of nitrogen at 1 atm is -196°C. The temp of liquid nitrogen in a tank open to the atmosphere at sea level will remain constant until it is depleted. Any heat transfer to the tank will result in the evaporation of some liquid nitrogen, which has a heat of vaporization of 198 kJ/kg and a density of 810 kg/m² at 1 atm. Consider a 3-m-diameter spherical tank that is initially filled with liquid nitrogen at 1 atm and -196°C. The tank is exposed to ambient air at 15°C, with a convection heat transfer coefficient of 35 W/m?-K. The temperature of the thin-shelled spherical tank is observed to be almost the same as the temperature of the nitrogen inside. Determine the rate of evaporation of the liquid nitrogen in the tank as a result of heat transfer N, vapor from the ambient air if the tank is (a) not insulated, (b) insulated with 5- T= 15°C cm thick fiberglass insulation (k=0.035 W/m-K) and (c) insulated with 2- cm thick super-insulation which has an effective thermal…arrow_forwardIf we neglect radiative heat transfer, what is the appropriate heat transfer coefficient value for stagnant ambient air?arrow_forward
- A particular automobile engine coolant has antifreeze protection to a temperature of-22 °C. Will this coolant offer protection at temperatures as low as -15 °F?arrow_forwardMust solve all questions.arrow_forwardEstimate the interfacial heat transfer coefficient for evaporation of a thin film of saturated liquid water at atmospheric pressure. The liquid film rests on a flat, solid surface to which a constant and uniform heat flux of 150 kW/m? is applied. The accommodation coefficient may be taken to be 0.05. If the liquid film thickness is 0.2 mm, compare the interfacial vaporization resistance with the conduction resistance through the liquid film.arrow_forward
- I need answer within 20 minutes please please with my best wishesarrow_forwardThe boiling temperature of nitrogen at atmospheric pressure at sea level (1 atm) is -196°C. Therefore, nitrogen is commonly used in low temperature scientific studies since the temperature of liquid nitrogen in a tank open to the atmosphere will remain constant at -196°C until the liquid nitrogen in the tank is depleted. Any heat transfer to the tank will result in the evaporation of some liquid nitrogen, which has a heat of vaporization of 198 kJ/kg and a density of 810 kg/m3 at 1 atm. Consider a 3-m-diameter spherical tank initially filled with liquid nitrogen at 1 atm and 196°C. The tank is exposed to 22°C ambient air with a heat transfer coefficient of 22 W/m2 · °C. The temperature of the thin-shelled spherical tank is observed to be almost the same as the temperature of the nitrogen inside. Disregarding any radiation heat exchange, determine the rate of evaporation of the liquid nitrogen in the tank as a result of the heat transfer from the ambient air in kg/sec. Answer in…arrow_forwardPlease solve this question, Thank you ery much.arrow_forward
- The boiling temperature of oxygen at atmospheric pressure at sea level (1 atm) is -183ºC. Therefore, oxygen is used in low temperature scientific studies since the temperature of liquid oxygen in a tank open to the atmosphere remains constant at -183ºC until the liquid oxygen in the tank is depleted. Any heat transfer to the tank results in the evaporation of some liquid oxygen, which has a heat of vaporization of 213 kJ/kg and a density of 1140 kg/m3at 1 atm. Consider a 4 m diameter spherical tank initially filled with liquid oxygen at 1 atm and -183ºC. The tank is exosed to 20ºC ambient ait with a heat transfer coefficient of 25 W/m2. ºC. The temperature of the thin-shelled spherical tank is observed to be almost the same as the temperature of the oxygen inside. Disregarding any radiation heat exchange, determine the rate of evaporation of the liquid oxygen in the tank as a result of the heat transfer from the ambient airarrow_forwardA vertical plate 30 cm wide by 30 cm is maintained at 98 °C and exposed to saturated steam at 1 atm. Calculate the rate of heat transfer and the total mass of steam condensed per hour. pls do fastarrow_forwardThe boiling temperature of nitrogen at atmospheric pressure at sea level (1 atm pressure) is -196 °C. Therefore, nitrogen is commonly used in low-temperature scientific studies since the temperature of liquid nitrogen in a tank open to the atmosphere will remain constant at -196 °C until it is depleted. Any heat transfer to the tank will result in the evaporation of some liquid nitrogen, which has a heat of vaporization of 198 kJ/kg and a density of 810 kg/m3 at 1 atm. Consider a 3-m-diameter spherical tank that is initially filled with liquid nitrogen at 1 atm and -196 °C. The tank is exposed to ambient air at 15° C, with a combined convection and radiation heat transfer coefficient of 35 W/m2⋅K. The temperature of the thin-shelled spherical tank is observed to be almost the same as the temperature of the nitrogen inside. Determine the rate of evaporation (in kg/s) of the liquid nitrogen in the tank as a result of the heat transfer from the ambient air if the tank is insulated with…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license