Saturated steam at 0.1 bar condenses with a convection coefficient of
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
Fundamentals of Heat and Mass Transfer
Additional Engineering Textbook Solutions
Degarmo's Materials And Processes In Manufacturing
Heating Ventilating and Air Conditioning: Analysis and Design
Applied Statics and Strength of Materials (6th Edition)
Applied Fluid Mechanics (7th Edition)
Introduction To Finite Element Analysis And Design
Engineering Mechanics: Statics
- A condenser consists of 5 horizontal pipes of 3 meters length of 1/4 sch40 arranged in 6 rows on top of each other. Cooling water with a heat transfer coefficient of 2000W / m-K flows through the pipes. As the flow rate of water is very high, the water temperature is fixed to 35C. Saturated water vapor at 2 bar pressure condenses outside the pipes. Calculate the condenser capacity in kW.arrow_forwardHeat Transfer with a Liquid Metal. The liquid metal bismuth at a flow rate of 2.00 kg/s enters a tube having an inside diameter of 35 mm at 425°C and is heated to 430°C in the tube. The tube wall is maintained at a temperature of 25°C above the liquid bulk temperature. Calculate the tube length required. The physical properties are as follows (H1): k = 15.6 W/m K, c,=149 J/kg K, u = 1.34 x 10-3 Pa s.arrow_forward• An aluminum pot contains water that is kept steadily boiling (100 °C). The bottom surface of the pot, which is 12 mm thick and 1.5x10t mm2 in area, is maintained at a temperature of 102°C by an electric heating unit. Find the rate at which heat is transferred through the bottom surface. Compare this with a copper based pot. Tc 0 0 L=12mm Base of pot TH A= area of basearrow_forward
- show complete and detailed solution.arrow_forwardSteam condenses at 100°C on the outer surface of a pipe with a thermal conductivity of 180 J/ms°C. The surface heat transfer coefficient of the water flowing in the pipe is 4000 J/m²s°C, and the heat transfer coefficient created by the steam condensing outside is 10000 J/m²s°C. The length of the pipe is 5 m and the thread diameter is 25 mm. Since the pipe thickness is 1 mm, calculate the total heat transfer coefficient and the rate of heat transfer from the condensed steam to the water at 15 °Carrow_forwarda 2cm diameter copper meltallic element at an initial uniform temperature of 60 C is submerged in 20c water. The temp of the sphere after 20 seconds is 31c. Determine the average heat transfer coefficient. write assumptions.arrow_forward
- Calculate the heat losses per unit length in a horizontal tube with an outside diameter of 15 cm, if its surface is kept at 400 K AND the surrounding air has a temperature of 300 K and a pressure of 1 bar.The properties of air at a pressure of 1 bar and a film temperature of 350 K are: In this case, v = 20.76 x 10-6 m2/s , α = 0.2983 x 10-4 m2/s, k = 0.03003 W/mK, Pr = 0.697, β = 2.86 x 10-3 K-1arrow_forward2. For a saturated dry steam at 1,500 KPa that passes through a 100 mm (OD) steel pipe with a thickness of 5 mm and a length of 100 meters. The steam line is insulated with a 50 mm thickness and a thermal conductivity of 0.25 W/m.C. For a mass flow rate of 600 kg of steam per hour. The surface film conductance of steam is h = 5,500 W/m?.C, surface film conductance of air is h = 12 W/m?.C , thermal conductivity of pipe material is k = 153 W/m.C and the ambient air temperature is -10°C . Determine the following: a) The quality of steam after passing through the pipe b) Explain the concepts/principles that were considered and the factors that affected the condition of the above mentioned items (a & b) @ 1,500 KPa (tsat = 198.32°C) kJ 2,792.20- kg k] 844.89 kg kJ 1,947.30- kg 1 hg 2 hf hfgarrow_forwardPlease quicklyarrow_forward
- Please quicklyarrow_forwardHot fluid "C= 2562 J/kg.k , Pr=51.3, µ = 5.22E-3 Pa.s, k= 0.260 W/m.K" flows at 1.3 kg/min inside a 3-mm diameter, thin- walled tube. The tube is coiled and submerged in a water bath maintained at 23°C. The fluid experiences a temperature drop of 60°C and leaves the tube at 35°C. What is the required length of the tube "m"? Neglect heat transfer enhancement associated with the coiling. Assume fully developed flow, if turbulent flow use Dittus-Boelter equation: Nu = 0.023 Re 0.8 Pr. Select one: A. 25.62 В. 35.27 C. 27.95 D. 30.61 E. 33.27arrow_forwardA vertical condenser composed of ½” and 1.5” Std Steel pipes will handle cyclohexane vapor condensing at 1 atm inside the small pipe. Assume water as the cooling medium at an average temperature of 70oC and heat transfer coefficient of 3000 W/m2 -K. Assuming film type condensation, what is the mass rate of cyclohexane if the exchanger is 1.5 m long?arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning