Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10, Problem 10.62P
To determine
The convection coefficient for inner side of the tube.
The convection coefficient for outer side of the tube.
The inner tube wall outlet temperature.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
the stack gas from a chemical operation contain vapors tha must be condensed by lowering its temperature from 315 to 35c. the gas flow rate is 0.70 m/sec. water is vailable at 10C and 1.26 kg/sec. A two shell and 4 pass tube counterflow heat exchange will be used with a water flowing through the tubes. the gas has aspecific heat of 1.10 kj/kg-k and a gas constant of 0.36 kj/kg-k. calculate the LMTD.
answer question (B) only
Saturated steam at 110°C is condensed in a shell-and-tube heat exchanger (1 shell pass; 2, 4, ⋯ tube passes) with a UA value of 2.5 kW/K. Cooling water enters at 40°C.
(a) Calculate the cooling water flow rate required to maintain a heat rate of 150 kW.
(b) Assuming that UA is independent of flow rate, calculate and plot the water flow rate required to provide heat rates over the range from 130 to 160 kW. Comment on the validity of your assumption.
Chapter 10 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 10 - Show that, for water at 1-atm pressure with...Ch. 10 - The surface of a horizontal. 7-mm-diameter...Ch. 10 - The role of surface tension in bubble formation...Ch. 10 - Estimate the heat transfer coefficient, h,...Ch. 10 - Prob. 10.5PCh. 10 - Prob. 10.6PCh. 10 - Prob. 10.7PCh. 10 - Prob. 10.8PCh. 10 - Calculate the critical heat flux on a large...Ch. 10 - Prob. 10.11P
Ch. 10 - Prob. 10.12PCh. 10 - Prob. 10.13PCh. 10 - Prob. 10.15PCh. 10 - Prob. 10.16PCh. 10 - Consider a gas-fired boiler in which five coiled,...Ch. 10 - Prob. 10.18PCh. 10 - Prob. 10.19PCh. 10 - Prob. 10.20PCh. 10 - Prob. 10.22PCh. 10 - Prob. 10.24PCh. 10 - Prob. 10.25PCh. 10 - A small copper sphere, initially at a uniform,...Ch. 10 - Prob. 10.28PCh. 10 - A disk-shaped turbine rotor is heat-treated by...Ch. 10 - A steel bar, 20 mm in diameter and 200 mm long,...Ch. 10 - Electrical current passes through a horizontal....Ch. 10 - Consider a horizontal. D=1 -mm-diameter platinum...Ch. 10 - Prob. 10.34PCh. 10 - Prob. 10.35PCh. 10 - Prob. 10.36PCh. 10 - Prob. 10.37PCh. 10 - A polished copper sphere of 10-mm diameter,...Ch. 10 - Prob. 10.39PCh. 10 - Prob. 10.40PCh. 10 - Consider refrigerant R-134a flowing in a smooth,...Ch. 10 - Determine the tube diameter associated with p=1...Ch. 10 - Saturated steam at 0.1 bar condenses with a...Ch. 10 - Prob. 10.45PCh. 10 - Prob. 10.46PCh. 10 - Prob. 10.47PCh. 10 - Prob. 10.48PCh. 10 - Prob. 10.50PCh. 10 - Prob. 10.53PCh. 10 - The condenser of a steam power plant consists of...Ch. 10 - Prob. 10.56PCh. 10 - Prob. 10.61PCh. 10 - Prob. 10.62PCh. 10 - A technique for cooling a multichip module...Ch. 10 - Determine the rate of condensation on a 100-mm...Ch. 10 - Prob. 10.66PCh. 10 - Prob. 10.67PCh. 10 - Prob. 10.70PCh. 10 - Prob. 10.71PCh. 10 - Prob. 10.74PCh. 10 - Prob. 10.75PCh. 10 - A thin-walled cylindrical container of diameter D...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 10.1 In a heat exchanger, as shown in the accompanying figure, air flows over brass tubes of 1.8-cm 1D and 2.1-cm OD containing steam. The convection heat transfer coefficients on the air and steam sides of the tubes are , respectively. Calculate the overall heal transfer coefficient for the heal exchanger (a) based on the inner tube area and (b) based on the outer tube area.arrow_forwardAnser question for (a) only for Heat Transferarrow_forwardYou as a Biochemical Engineer in an ezyme industries is assigned to handle a counter flow double pipe heat exchanger with A,= 9 m2 which used for cooling a fermentation broth (c, = 3.15 kJ/kg. K) at a rate of 10 kg/s with an inlet temperature of 90°C. The water used as coolant enters the heat exchanger at a rate of 8 kg/s with an inlet temperature of 10°C. The plant data gave the following equation for the overall heat transfer coefficient (in W/m².K): 600 %3D 1 2 • U.8 |m. where m. and m, are the cold and hot stream flow rates in kg/s, respectively.arrow_forward
- in a 10-m long center-current flow tubular heat exchanger, a liquid food, flowing in the inner pipe (inside diameter 5 cm), is heated from 4 to 60 C for pasteurization. In the outer tube (diameter 10 cm), hot water enters at 95 C and exits at 80 C. A) If the mass flow rate of the hot water is 5 kg/s, what is the flow rate of the pasteurized product? The specific heat of the water is 4.2 kJ/(kg C), specific heat of product is 3.8 kJ/(kg C) B) what is the log mean temperature difference C) What is the overall heat transfer coefficient for the heat exchanger based on the outside surface?arrow_forwardFlowing juice like 0.5kg / h enters the parallel-flow heat exchanger at 293 K and is heated by 400K water vapor (Cp = 1.76kJ / kgK), which is 2.5 kg / s. The exit temperature of the juice is 360 K, the area where heat transfer takes place Calculate the efficiency and heat transfer of the heat exchanger if it is 20 m2 and the overall heat transfer coefficient is 280W / m2K. (physical properties of fruit juice will be considered the same as water).arrow_forwardEthylene glycol with a mass flow rate of 0.01 kg / sec flows in a thin-walled pipe with a diameter of 3 mm. The pipe is in the form of a serpentine, and was lifted into a well-mixed water bath at 25 ° C. Calculate the heat transfer and pipe length required for the fluid to enter the pipe at 85 ° C and exit at 35 ° C?arrow_forward
- You are tasked to layout a cross-flow heat exchanger where both fluids remain unmixed. Unused engine oil is cooled at a flow rate of 3 kg/s. The oil enters the heat exchanger at 85.5°C and is cooled to 45°C. Water is used as the cooling medium at a flow rate of 2 kg/s, entering at 40°C and exiting at 60°C. The flow conditions in this heat exchanger yield the following convective heat transfer coefficients: h; = 8,000 W/m²/K and h, = 15,000 W/m²/K. Determine the following: 1. What is the area required to achieve the proposed performance? 2. During the design process it is recognized that the oil will cause fouling. The fouling coefficient is assumed to be 9.00*10-5 m²*K/W. How much larger will the area have to be to yield the same performance as in the clean state from part a?arrow_forward1) For a concentric counter-flow heat exchanger, hot oil is coming in the tube of the shell/tube heat exchanger and it's cooled by water that surrounds it in the shell. Calculate what is the required length of the heat exchanger tube in order to perform the necessary cooling. Assume there is negligible heat loss to the surroundings and negligible conductive heat resistance between the two fluids. Mass flow rate of oil = 0.17 kg/s Oil heat capacity = 2375 J/kg-ºC Oil convective heat transfer coefficient = 39.7 W/m²-°C Oil enters tube at temperature = 130 °C Oil leaves tube at temperature = 83 °C Water convective heat transfer coefficient = 2190 W/m²-°C Water enters shell at temperature 15 °C Water leaves shell at temperature = 74 °C Inner diameter = 4.5 cm Outer diameter = 6.5 cmarrow_forwardDerive the ΔTlm equation for a cocurrent (a.k.a. parallel flow) heat exchanger and comment on how your result compares to that for a countercurrent (a.k.a. counterflow) heat exchanger?arrow_forward
- Objectives of this experimentarrow_forwardAn oil cooler is used to cool lubricating oil from 70oC to 40oC. The cooling water enters the heat exchanger at 15oC and leaves at 25oC. The specific heat capacities of the oil and water are 2000 and 4200 J/Kg.K respectively, and the oil flow rate is 4 Kg/s. Calculate the water flow rate required. Calculate the true mean temperature difference for (two-shell-pass / four-tube-pass) and (one-shell-pass / two-tube-pass) heat exchangers respectively. Find the effectiveness of the heat exchangers.arrow_forwardFor phase-free heat transfer and turbulent flow on both sides of a tube-boiler type heat exchanger, how the heat transfer coefficient on the boiler side will change with 50% increase in mass flow rate and how the heat transfer coefficient on the tube side is affected by 50% increase in mass flow rate (without using numerical values. ) display mathematicallyarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
How Shell and Tube Heat Exchangers Work (Engineering); Author: saVRee;https://www.youtube.com/watch?v=OyQ3SaU4KKU;License: Standard Youtube License