Mechanics of Materials (MindTap Course List)
9th Edition
ISBN: 9781337093347
Author: Barry J. Goodno, James M. Gere
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1, Problem 1.8.8P
An elastomeric bearing pad consisting of two steel plates bonded to a chloroprene elastomer (an artificial rubber) is subjected to a shear force V during a static loading test (see figure). The pad has dimensions a = 125 mm and b = 240 mm, and the elastomer has a thickness t = 50 mm. When the Force V equals 12 kN, the top plate is found to have displaced laterally S.O mm with respect to the bottom plate.
What is the shear modulus of elasticity G of the chloroprene?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Design a cotter joint to support a axial load of 100kN . Carbon steel material selected whichhas Tensile stress = 100MPa Compressive stress =150MPa; Shear stress =60MPa
Design a cotter joint to support a axial load of 100kN . Carbon steel material selected whichhas Tensile stress = 100MPa Compressive stress =150MPa; Shear stress =60MPa
I need all the derivations from Bohr's postulates in handwritten form
Chapter 1 Solutions
Mechanics of Materials (MindTap Course List)
Ch. 1 - Find support reactions at A and B and then...Ch. 1 - Find support reactions at A and B and then...Ch. 1 - Segments AB and BC of beam ABC are pin connected a...Ch. 1 - Segments A B and BCD of beam A BCD are pin...Ch. 1 - Segments AB and BCD of beam ABCD are pin connected...Ch. 1 - Consider the plane truss with a pin support at...Ch. 1 - A plane truss has a pin support at A and a roller...Ch. 1 - A plane truss has a pin support at F and a roller...Ch. 1 - Find support reactions at A and B and then use the...Ch. 1 - Find support reactions at 4 and Band then use the...
Ch. 1 - Repeat 1.3-9 but use the method of sections go...Ch. 1 - Repeat 1.3-10 but use the method of sections to...Ch. 1 - A space truss has three-dimensional pin supports...Ch. 1 - A space truss is restrained at joints O, A. B. and...Ch. 1 - 1.3-15 A space truss is restrained at joints A, B,...Ch. 1 - A space truss is restrained at joints A, B. and C,...Ch. 1 - A stepped shaft ABC consisting of two solid,...Ch. 1 - A stepped shaft ABC consisting of two solid,...Ch. 1 - A plane frame is restrained al joints A and C, as...Ch. 1 - A plane Frame is restrained at joints A and D, as...Ch. 1 - Find support reactions at A and D and then...Ch. 1 - Find support reactions at A and D and then...Ch. 1 - ,3-23 A 200-lb trap door (AD) is supported by a...Ch. 1 - A plane frame is constructed by using a pin...Ch. 1 - A plane Frame with pin supports at A and E has a...Ch. 1 - A plane frame with a pin support at A and roller...Ch. 1 - A 150-lb rigid bar AB. with friction less rollers...Ch. 1 - A plane frame has a pin support at A and roller...Ch. 1 - A special vehicle brake is clamped at O when the...Ch. 1 - Space frame A BCD is clamped at A, except it is...Ch. 1 - Space Frame ABC is clamped at A, except it is free...Ch. 1 - A soccer goal is subjected to gravity loads (in...Ch. 1 - An elliptical exerciser machine (see figure part...Ch. 1 - A mountain bike is moving along a flat path at...Ch. 1 - A hollow circular post ABC (see figure) supports a...Ch. 1 - A circular nylon pipe supports a downward load PA=...Ch. 1 - A circular tube AB is fixed at one end and free at...Ch. 1 - A force P of 70 N is applied by a rider to the...Ch. 1 - A bicycle rider wants to compare the effectiveness...Ch. 1 - A circular aluminum tube with a length of L = 420...Ch. 1 - The cross section of a concrete corner column that...Ch. 1 - A car weighing 130 kN when fully loaded is pulled...Ch. 1 - Two steel wines support a moveable overhead camera...Ch. 1 - A long re Lai nine: wall is braced by wood shores...Ch. 1 - A pickup truck tailgate supports a crate where Wc=...Ch. 1 - Solve the preceding problem if the mass of the...Ch. 1 - An L-shaped reinforced concrete slab 12 Ft X 12...Ch. 1 - A crane boom of mass 450 leg with its center of...Ch. 1 - Two gondolas on a ski lift are locked in the...Ch. 1 - A round bar ABC of length 2L (see figure) rotates...Ch. 1 - Two separate cables AC and BC support a sign...Ch. 1 - Imagine that a long steel wire hangs vertically...Ch. 1 - A steel riser pipe hangs from a drill rig located...Ch. 1 - Three different materials, designated A, B. and C,...Ch. 1 - The strength-to-weight ratio of a structural...Ch. 1 - A symmetrical framework consisting of three...Ch. 1 - A specimen of a methacrylate plastic is tested in...Ch. 1 - The data shown in the accompanying table are From...Ch. 1 - A bar made of structural steel having the...Ch. 1 - A bar of length 2.0 m is made of a structural...Ch. 1 - A bar made of structural steel having the...Ch. 1 - A circular bar of magnesium alloy is 750 mm long....Ch. 1 - An aluminum bar has length L = 6 ft and diameter d...Ch. 1 - A continuous cable (diameter 6 mm) with tension...Ch. 1 - A wine of length L = 4 ft and diameter d = 0.125...Ch. 1 - A high-strength steel bar used in a large crane...Ch. 1 - A round bar of 10 mm diameter is made of aluminum...Ch. 1 - A polyethylene bar with a diameter d, = 4.0 in. is...Ch. 1 - A square plastic bar (length LP,side dimension...Ch. 1 - A polyethylene bar having rectangular cross...Ch. 1 - A circular aluminum tube of length L = 600 mm is...Ch. 1 - A bar of monel metal with a length L = 9 in. and a...Ch. 1 - A tensile test is performed on a brass specimen 10...Ch. 1 - A hollow, brass circular pipe ABC (see figure)...Ch. 1 - Three round, copper alloy bars having the same...Ch. 1 - An angle bracket having a thickness t = 0.75 in....Ch. 1 - Truss members supporting a roof are connected to a...Ch. 1 - The upper deck ala foothill stadium is supported...Ch. 1 - The inclined ladder AB supports a house painter...Ch. 1 - The Force in the brake cable of the V-brake system...Ch. 1 - A steel plate of dimensions 2.5 × l.5 × 0.08 m and...Ch. 1 - A special-purpose eye boll with a shank diameter d...Ch. 1 - An elastomeric bearing pad consisting of two steel...Ch. 1 - A joint between iwo concrete slabs A and B is...Ch. 1 - A steel punch consists of two shafts: upper shaft...Ch. 1 - A joint between two glass plates A and B is filled...Ch. 1 - A punch for making a slotted hole in ID cards is...Ch. 1 - A steel riser pipe hangs from a drill rig located...Ch. 1 - A flexible connection consisting of rubber pads...Ch. 1 - .15 A hitch-mounted bicycle rack is designed to...Ch. 1 - The clamp shown in the figure supports a load...Ch. 1 - A shock mount constructed as shown iu the figure...Ch. 1 - Prob. 1.8.18PCh. 1 - A spray nozzle for a garden hose requires under a...Ch. 1 - A single steel strut AB with a diameter (a) Find...Ch. 1 - The top portion of a pole saw used to trim (a)...Ch. 1 - A cargo ship is tied down to marine boll arts at a...Ch. 1 - A basketball player hangs on the rim after (a)...Ch. 1 - A bicycle chain consists of a series of small...Ch. 1 - A bar of solid circular cross section is loaded in...Ch. 1 - .2 A torque T0is transmitted between two flanged...Ch. 1 - A tie-down on the deck of a sailboat consists of a...Ch. 1 - Two steel tubes are joined at B by four pins (dp=...Ch. 1 - A steel pad supporting heavy machinery rests on...Ch. 1 - A steel pad supporting heavy machinery rests on...Ch. 1 - A steel riser pipe hangs from a drill rig....Ch. 1 - The rear hatch of a van (BDCG in figure part a) is...Ch. 1 - A lifeboat hangs from two ship's davits. as shown...Ch. 1 - A cable and pulley system in the figure part a...Ch. 1 - A ship's spar is attached at the base of a mast by...Ch. 1 - What is the maximum possible value of the clamping...Ch. 1 - A metal bar AB of a weight Ills suspended by a...Ch. 1 - A plane truss is subjected to loads 2P and P at...Ch. 1 - A solid bar of circular cross section (diameter d)...Ch. 1 - A solid steel bar of a diameter d1= 60 mm has a...Ch. 1 - A sign of weight W is supported at its base by...Ch. 1 - The piston in an engine is attached to a...Ch. 1 - An aluminum tube is required to transmit an axial...Ch. 1 - A copper alloy pipe with a yield stress aY= 290...Ch. 1 - A horizontal beam AB with cross-sectional...Ch. 1 - Lateral bracing for an elevated pedestrian walkway...Ch. 1 - A plane truss has joint loads P, 2P, and 3P at...Ch. 1 - Cable DB supports canopy beam OABC as shown in the...Ch. 1 - Continuous cable ADS runs over a small...Ch. 1 - A suspender on a suspension bridge consist of a...Ch. 1 - A square steel tube of a length L = 20 ft and...Ch. 1 - A cable and pulley system at D is used to bring a...Ch. 1 - A pressurized circular cylinder has a sealed cover...Ch. 1 - A tubular post of outer diameter d2is guyed by two...Ch. 1 - A large precast concrete panel for a warehouse is...Ch. 1 - A steel column of hollow circular cross section is...Ch. 1 - An elevated jogging track is supported at...Ch. 1 - A flat bar of a widths b = 60 mm and thickness t =...Ch. 1 - Continuous cable A DB runs over a small friction...Ch. 1 - Continuous cable ADB runs over a small friction...Ch. 1 - Two bars AC and BC of the same material support a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 12. Figure Q12 shows a prospective design for a conveyor roller system, for transferring crates, one at a time. The system is made up of two parallel rectangular steel beams, built-in at one end and simply supported at the other, with closely spaced rollers mounted in-between, for the crate to pass over. a) Using Macaulay notation, carry out an analysis of the problem and calculate the deflection of the mid-length point of the beams when the crate is centrally located, midway between A and B. State any important assumptions used in your analysis. [20 marks] b) Comment briefly whether this would be the maximum deflection of the beams when the crate is centrally located. 2 m 8 m A Direction of travel Figure Q12 (side view, only one beam visible) Useful information I for each separate beam = 12 ×10 m² E for both beams = 210 GPa Weight of one crate = 800 N [5 marks] Barrow_forward11. A ring (side view shown in Figure Q11) has a circular solid cross-section of 5 mm diameter. The ring itself has a radius of R = 100 mm and a very narrow gap at point A, that allows the two free ends to be pulled apart by forces P, increasing the size of the gap. ○ P A Figure Q11 P a) Show that the total strain energy of the ring due to the applied forces is: U = 3πP²R³ 2EI [12 marks] b) Find the maximum bending stress produced if forces of P = 8 N are applied. [6 marks] c) What minimum force P would cause the material in the ring to yield and at which locations could this yielding begin to occur? Useful information E for the ring material = 75 GPa Oyield for the ring material = 190 MPa [7 marks]arrow_forwardQ2(15 Marks): From Fig. 2, Determine (a) mass equivalent in term x2, (b) stiffness equivalent in term x2, and (c) the natural frequency for the system in term x2. Note: (1) J Cylinder = mcr? J link (2) 2 3 Pulley, mass moment of inertia J Rigid link 1 (mass m₁), rotates with pulley. about O Cylinder, mass m Adherence to the symbols as in the question 152 153 xx(1) Fig. (2) m k₁ nimmunizmu Rigid link 2 (mass m₂)arrow_forward
- Q3-B (7 Marks): A mass (m) is suspended from a spring of stiffness 4000 N/m and is subjected to a harmonic force having an amplitude of 100 N and a frequency of 5 Hz. The amplitude of the forced motion of the mass is observed to be 20 mm. Find the value of mass (m).arrow_forwardFig. (2) Q3-A (8 Marks): An automobile is modeled as a single-degree-of-freedom system vibrating in the vertical direction. It is driven along a road whose elevation varies sinusoidally. The distance from peak to trough is 0.2 m and the distance along the road between the peaks is 35 m. If the natural frequency of the automobile is 2 Hz and the damping ratio of the shock absorbers is 0.15, determine the amplitude of vibration of the automobile at a speed of 60 km/hour 6.18arrow_forward2. Q4(15 Marks): The motor-pump system shown in Fig. 4. is modeled as a rigid bar of mass m=50 kg and mass moment of inertia Jo=100 kg-m. The foundation of the system can be replaced by two springs of stiffness k=500 N/m and k₂-200 N/m and L=1 m. Determine the natural frequencies of the system. Motor, Fig. (4) 1 6(1) Pump C.G. x(1) x₁(1) Base (a) Foundation (b) C.G. m, Jo x2(1)arrow_forward
- Q5(15 marks): Two equal pendulum free to rotate counterclockwise about the x-x axis are couple together by a rubber hose of torsional stiffness K lb.in/rad.as shown in Fig.5. determine the natural frequencies and mode shape for the normal modes of vibration. If L=19.3 in., W=3.86 lb, and k=20 lb.in/rad. Note: J=mL2 X (1) m 2 mc² 2 Xarrow_forwardUniversity of Babylon College of Engineering\Al-Musayab Automobile Engineering Department Final Examination/1st Attempt جامعة بابل Subject: I. C. Engines I Maximum Time: 3 Hours Class: 3rd Date: / / 2023 Answer 07 of the following questions (First Semester) 2022/2023 (1) Choose the correct answer for eight only from below 1- Indicator diagram shows for one complete revolution of crank Maximum mark: 50 Deg. a) variation of kinetic heat in the cylinder. b) variation of pressure head in the cylinder c) variation of kinetic and pressure heat in the cylinder. d) none of the above. 2- A carburetor is used to supply (a) petrol, air and lubricating oil (b) air and diesel (e) petrol and lubricating oil (d) petrol and air. 3- In a four stroke cycle petrol engine, the charge is compressed when a) inlet valve is closed. b) exit valve is closed. c) both inlet and exit valves are closed. d) both inlet and exit valves are open. (8 deg.) 4- For an engine operating on air standard Otto cycle, the…arrow_forward(6) Determine the sizes of fuel orifice to give a 13.5 air fuel ratio, if the venture throat has 3 cm diameter and the pressure drop in the venture is 6.5 cm Hg. The air temperature and pressure at carburetor entrance are 1 bar and 27 °C respectively. The fuel orifice is at the same level as that of the float chamber. Take density of gasoline as (7 deg.) 740 kg/m³ and discharge coefficient as unity. Assume atmospheric pressure to be 76 cm of Hg. (7) A four-cylinder, four-stroke internal combustion engine has a bore of 87 mm. and a stroke of 77 mm. The clearance volume is 17% of the stroke volume and the engine with speed of 2700 rpm. The processes within each cylinder are modeled as an Otto cycle with a pressure of 1 atm and a temperature of 17 °C at the beginning (7 deg.) of compression. The maximum temperature in the cycle is 2717 °C (a) Draw the P-v diagram; label Pressures, Temperatures, Qin, and Qual (b) Calculate the mass of air at the beginning of the cycle (c) Calculate the…arrow_forward
- University of Babylon College of Engineering\Al-Musayab Automobile Engineering Department Final Examination/1st Attempt جامعة بابل Subject: I. C. Engines I Maximum Time: 3 Hours Class: 3rd Date: / / 2023 Answer 07 of the following questions (First Semester) 2022/2023 (1) Choose the correct answer for eight only from below 1- Indicator diagram shows for one complete revolution of crank Maximum mark: 50 Deg. a) variation of kinetic heat in the cylinder. b) variation of pressure head in the cylinder c) variation of kinetic and pressure heat in the cylinder. d) none of the above. 2- A carburetor is used to supply (a) petrol, air and lubricating oil (b) air and diesel (e) petrol and lubricating oil (d) petrol and air. 3- In a four stroke cycle petrol engine, the charge is compressed when a) inlet valve is closed. b) exit valve is closed. c) both inlet and exit valves are closed. d) both inlet and exit valves are open. (8 deg.) 4- For an engine operating on air standard Otto cycle, the…arrow_forward1,1 51 K/s .. زيد عامر اليوم عند 9:34 م ۱۷۲ من ۱۷۳ University of Babylon College of Engineering Al-Musayab Automobile Engineering Department Final Examination/1" Attempt T19:34 Subject: 1. C. Engines I Maximum Time: 3 Hours Class: 3 Date: 1 / 2023 Answer 07 of the following questions (First Semester) 2022/2023 (1) Choose the correct answer for eight only from below 1- Indicator diagram shows for one complete revolution of crank Maximum mark: 50 Deg. a) variation of kinetic heat in the cylinder. b) variation of pressure head in the cylinder e) variation of kinetic and pressure heat in the cylinder, d) none of the above. 2- A carburetor is used to supply (a) petrol, air and lubricating oil (b) air and diesel (c) petrol and lubricating oil (d) petrol and air. 3- In a four stroke cycle petrol engine, the charge is compressed when a) inlet valve is closed. b) exit valve is closed. e) both inlet and exit valves are closed. d) both inlet and exit valves are open. (8 deg.) 4- For an engine…arrow_forward1- Determine the following: 1- RSHF? 2- C.C.C in tons-ref. 3- Mass of supply air? Fresh Spray chilled water S air 100% RH To 34 C db & 26 wbt S Operation fan room I Exhaust air Ti 22 C db & 50% RHarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Pressure Vessels Introduction; Author: Engineering and Design Solutions;https://www.youtube.com/watch?v=Z1J97IpFc2k;License: Standard youtube license