Mechanics of Materials (MindTap Course List)
9th Edition
ISBN: 9781337093347
Author: Barry J. Goodno, James M. Gere
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1, Problem 1.4.16P
A round bar ABC of length 2L (see figure) rotates about an axis through the midpoint C with constant angular speed w (radians per second). The material of the bar has weight density y.
(a) Derive a formula for the tensile stress a’ in the bar as a function of the distance x from the midpoint C.
(b) What is the maximum tensile stress a max?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
In the figure, copper AB copper with a diameter of 24 mm and BC steel bars with a diameter of 20 mm are rigidly connected to each other at point B. A force of 6 kN was applied to the rod at the B point and 12 kN at the C point. Since the modulus of elasticity of copper is 100 GPa and the modulus of elasticity of steel is 200 GPa, find the displacement of the C point.
Please show complete solution and box the final answer
Using this equation
FL/AE
The assembly consists of two rods (AB and CD) and a rigid bar (AC). A force of 6 kips is applied as shown in the figure. Let AAB = 1.5 in2, ACD = 1.1 in2, LA = 6 ft, LC = 4 ft, a = 1 ft, b = 2 ft and E= 17400 ksi.
Determine the deformation in bar CD?
Determine the deformation in bar AB?
Determine the angle of rotation in rigid bar AC?
Chapter 1 Solutions
Mechanics of Materials (MindTap Course List)
Ch. 1 - Find support reactions at A and B and then...Ch. 1 - Find support reactions at A and B and then...Ch. 1 - Segments AB and BC of beam ABC are pin connected a...Ch. 1 - Segments A B and BCD of beam A BCD are pin...Ch. 1 - Segments AB and BCD of beam ABCD are pin connected...Ch. 1 - Consider the plane truss with a pin support at...Ch. 1 - A plane truss has a pin support at A and a roller...Ch. 1 - A plane truss has a pin support at F and a roller...Ch. 1 - Find support reactions at A and B and then use the...Ch. 1 - Find support reactions at 4 and Band then use the...
Ch. 1 - Repeat 1.3-9 but use the method of sections go...Ch. 1 - Repeat 1.3-10 but use the method of sections to...Ch. 1 - A space truss has three-dimensional pin supports...Ch. 1 - A space truss is restrained at joints O, A. B. and...Ch. 1 - 1.3-15 A space truss is restrained at joints A, B,...Ch. 1 - A space truss is restrained at joints A, B. and C,...Ch. 1 - A stepped shaft ABC consisting of two solid,...Ch. 1 - A stepped shaft ABC consisting of two solid,...Ch. 1 - A plane frame is restrained al joints A and C, as...Ch. 1 - A plane Frame is restrained at joints A and D, as...Ch. 1 - Find support reactions at A and D and then...Ch. 1 - Find support reactions at A and D and then...Ch. 1 - ,3-23 A 200-lb trap door (AD) is supported by a...Ch. 1 - A plane frame is constructed by using a pin...Ch. 1 - A plane Frame with pin supports at A and E has a...Ch. 1 - A plane frame with a pin support at A and roller...Ch. 1 - A 150-lb rigid bar AB. with friction less rollers...Ch. 1 - A plane frame has a pin support at A and roller...Ch. 1 - A special vehicle brake is clamped at O when the...Ch. 1 - Space frame A BCD is clamped at A, except it is...Ch. 1 - Space Frame ABC is clamped at A, except it is free...Ch. 1 - A soccer goal is subjected to gravity loads (in...Ch. 1 - An elliptical exerciser machine (see figure part...Ch. 1 - A mountain bike is moving along a flat path at...Ch. 1 - A hollow circular post ABC (see figure) supports a...Ch. 1 - A circular nylon pipe supports a downward load PA=...Ch. 1 - A circular tube AB is fixed at one end and free at...Ch. 1 - A force P of 70 N is applied by a rider to the...Ch. 1 - A bicycle rider wants to compare the effectiveness...Ch. 1 - A circular aluminum tube with a length of L = 420...Ch. 1 - The cross section of a concrete corner column that...Ch. 1 - A car weighing 130 kN when fully loaded is pulled...Ch. 1 - Two steel wines support a moveable overhead camera...Ch. 1 - A long re Lai nine: wall is braced by wood shores...Ch. 1 - A pickup truck tailgate supports a crate where Wc=...Ch. 1 - Solve the preceding problem if the mass of the...Ch. 1 - An L-shaped reinforced concrete slab 12 Ft X 12...Ch. 1 - A crane boom of mass 450 leg with its center of...Ch. 1 - Two gondolas on a ski lift are locked in the...Ch. 1 - A round bar ABC of length 2L (see figure) rotates...Ch. 1 - Two separate cables AC and BC support a sign...Ch. 1 - Imagine that a long steel wire hangs vertically...Ch. 1 - A steel riser pipe hangs from a drill rig located...Ch. 1 - Three different materials, designated A, B. and C,...Ch. 1 - The strength-to-weight ratio of a structural...Ch. 1 - A symmetrical framework consisting of three...Ch. 1 - A specimen of a methacrylate plastic is tested in...Ch. 1 - The data shown in the accompanying table are From...Ch. 1 - A bar made of structural steel having the...Ch. 1 - A bar of length 2.0 m is made of a structural...Ch. 1 - A bar made of structural steel having the...Ch. 1 - A circular bar of magnesium alloy is 750 mm long....Ch. 1 - An aluminum bar has length L = 6 ft and diameter d...Ch. 1 - A continuous cable (diameter 6 mm) with tension...Ch. 1 - A wine of length L = 4 ft and diameter d = 0.125...Ch. 1 - A high-strength steel bar used in a large crane...Ch. 1 - A round bar of 10 mm diameter is made of aluminum...Ch. 1 - A polyethylene bar with a diameter d, = 4.0 in. is...Ch. 1 - A square plastic bar (length LP,side dimension...Ch. 1 - A polyethylene bar having rectangular cross...Ch. 1 - A circular aluminum tube of length L = 600 mm is...Ch. 1 - A bar of monel metal with a length L = 9 in. and a...Ch. 1 - A tensile test is performed on a brass specimen 10...Ch. 1 - A hollow, brass circular pipe ABC (see figure)...Ch. 1 - Three round, copper alloy bars having the same...Ch. 1 - An angle bracket having a thickness t = 0.75 in....Ch. 1 - Truss members supporting a roof are connected to a...Ch. 1 - The upper deck ala foothill stadium is supported...Ch. 1 - The inclined ladder AB supports a house painter...Ch. 1 - The Force in the brake cable of the V-brake system...Ch. 1 - A steel plate of dimensions 2.5 × l.5 × 0.08 m and...Ch. 1 - A special-purpose eye boll with a shank diameter d...Ch. 1 - An elastomeric bearing pad consisting of two steel...Ch. 1 - A joint between iwo concrete slabs A and B is...Ch. 1 - A steel punch consists of two shafts: upper shaft...Ch. 1 - A joint between two glass plates A and B is filled...Ch. 1 - A punch for making a slotted hole in ID cards is...Ch. 1 - A steel riser pipe hangs from a drill rig located...Ch. 1 - A flexible connection consisting of rubber pads...Ch. 1 - .15 A hitch-mounted bicycle rack is designed to...Ch. 1 - The clamp shown in the figure supports a load...Ch. 1 - A shock mount constructed as shown iu the figure...Ch. 1 - Prob. 1.8.18PCh. 1 - A spray nozzle for a garden hose requires under a...Ch. 1 - A single steel strut AB with a diameter (a) Find...Ch. 1 - The top portion of a pole saw used to trim (a)...Ch. 1 - A cargo ship is tied down to marine boll arts at a...Ch. 1 - A basketball player hangs on the rim after (a)...Ch. 1 - A bicycle chain consists of a series of small...Ch. 1 - A bar of solid circular cross section is loaded in...Ch. 1 - .2 A torque T0is transmitted between two flanged...Ch. 1 - A tie-down on the deck of a sailboat consists of a...Ch. 1 - Two steel tubes are joined at B by four pins (dp=...Ch. 1 - A steel pad supporting heavy machinery rests on...Ch. 1 - A steel pad supporting heavy machinery rests on...Ch. 1 - A steel riser pipe hangs from a drill rig....Ch. 1 - The rear hatch of a van (BDCG in figure part a) is...Ch. 1 - A lifeboat hangs from two ship's davits. as shown...Ch. 1 - A cable and pulley system in the figure part a...Ch. 1 - A ship's spar is attached at the base of a mast by...Ch. 1 - What is the maximum possible value of the clamping...Ch. 1 - A metal bar AB of a weight Ills suspended by a...Ch. 1 - A plane truss is subjected to loads 2P and P at...Ch. 1 - A solid bar of circular cross section (diameter d)...Ch. 1 - A solid steel bar of a diameter d1= 60 mm has a...Ch. 1 - A sign of weight W is supported at its base by...Ch. 1 - The piston in an engine is attached to a...Ch. 1 - An aluminum tube is required to transmit an axial...Ch. 1 - A copper alloy pipe with a yield stress aY= 290...Ch. 1 - A horizontal beam AB with cross-sectional...Ch. 1 - Lateral bracing for an elevated pedestrian walkway...Ch. 1 - A plane truss has joint loads P, 2P, and 3P at...Ch. 1 - Cable DB supports canopy beam OABC as shown in the...Ch. 1 - Continuous cable ADS runs over a small...Ch. 1 - A suspender on a suspension bridge consist of a...Ch. 1 - A square steel tube of a length L = 20 ft and...Ch. 1 - A cable and pulley system at D is used to bring a...Ch. 1 - A pressurized circular cylinder has a sealed cover...Ch. 1 - A tubular post of outer diameter d2is guyed by two...Ch. 1 - A large precast concrete panel for a warehouse is...Ch. 1 - A steel column of hollow circular cross section is...Ch. 1 - An elevated jogging track is supported at...Ch. 1 - A flat bar of a widths b = 60 mm and thickness t =...Ch. 1 - Continuous cable A DB runs over a small friction...Ch. 1 - Continuous cable ADB runs over a small friction...Ch. 1 - Two bars AC and BC of the same material support a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A bar ABC revolves in a horizontal plane about a vertical axis at the midpoint C (see figure). The bar, which has a length 2L and crass-sectional area A, revolves at constant angular speed at. Each half of the bar (AC and BC) has a weight W, and supports a weight W2at its end. Derive the following formula for the elongation of one-half of the bar (that is. the elongation of either AC ar BC). =L223gEA(w1+3w2) in which E is t he modulus of elasticity of the material of the bar and g is the acceleration of gravity.arrow_forwardSolve the preceding problem for the following data: b = 6 in., b = 10 in, L = 110 ft, tan a = 1/3, and q = 325 lb/ft.arrow_forward-11 A solid steel bar (G = 11.8 X 106 psi ) of diameter d = 2,0 in. is subjected to torques T = 8.0 kip-in. acting in the directions shown in the figure. Determine the maximum shear, tensile, and compressive stresses in the bar and show these stresses on sketches of properly oriented stress elements. Determine the corresponding maximum strains (shear, tensile, and compressive) in the bar and show these strains on sketches of the deformed elements.arrow_forward
- A tubular bar with outside diameterd2= 4.0 in, is twisted by torques T = 70,0 kip-in. (see figure). Under the action of these torques, the maximum tensile stress in the bar is found to be 6400 psi. Determine the inside diameter rtf of the bar. If the bar has length L = 48.0 in. and is made of aluminum with shear modulus G = 4,0 × 106 psi, what is the angle of twist d (in degrees) between the ends of the bar? (c) Determine the maximum shear strain y (in radians)?arrow_forwardA cylindrical pressure vessel having a radius r = 14 in. and wall thickness t = 0,5 in, is subjected to internal pressure p = 375 psi, In addition, a torque T = 90 kip-ft acts at each end of the cylinder (see figure), (a) Determine the maximum tensile stress ctniXand the maximum in-plane shear stress Tmjv in the wall of the cylinder. (b) If the allowable in-plane shear stress is 4.5 ksi, what is the maximum allowable torque T\ (c) If 7 = 150 kip-ft and allowable in-plane shear and allowable normal stresses are 4.5 ksi and 11.5 ksi, respectively, what is the minimum required wall thicknessarrow_forwardA heavy flywheel rotating at n revolutions per minute is rigidly attached to the end of a shaft of diameter d (see figure). If the bearing at A suddenly freezes, what will be the maximum angle of twist <£of the shaft? What is the corresponding maximum shear stress in the shaft? (Let L = length of the shaft, G = shear modulus of elasticity, and / = mass moment of inertia of the flywheel about the axis of the shaft. Also, disregard friction in the bearings at Sand Cand disregard the mass of the shaft.) Hint: Equate the kinetic energy of the rotating flywheel to the strain energy of the shaft.arrow_forward
- A solid aluminum bar (G = 27 GPa ) of diameter d = 40 mm is subjected to torques T = 300 N - m acting in the directions shown in the figure, Determine the maximum shear, tensile, and compressive stresses in the bar and show these stresses on sketches of properly oriented stress elements. Determine the corresponding maximum strains (shear, tensile, and compressive) in the bar and show these strains on sketches of the deformed elements.arrow_forwardA nonprismatic bar ABC with a solid circular cross section is loaded by distributed torques (sec figure). The intensity of the torques, that is, the torque per unit distance, is denoted t(x) and varies linearly from zero at A to a maximum value T0/L at B. Segment BC has linearly distributed torque of intensity r(x) = T0/3L of opposite sign to that applied along AB. Also, the polar moment of inertia of AB is twice that of BC and the shear modulus of elasticity of the material is G. Find the reaction torque RA. Find internal torsional moments T(x) in segments AB and BC. Find the rotation t0 Find the maximum shear stress tmaxand its location along the bar, Draw the torsional moment diagram (TMD:T(x),0 < x < L).arrow_forwardA vertical pole of solid, circular cross section is twisted by horizontal forces P = 5kN acting at the ends of a rigid horizontal arm AB (see figure part a). The distance from the outside of the pole to the line of action of each force is c = 125 mm (sec figure part b) and the pole height L = 350 mm. (a) If the allowable shear stress in the pole is 30 MPa, what is the minimum required diameter dminof the pole? (b) What is the torsional stiffness of the pole (kN · m/rad)? Assume that G = 28 GPa. (c) If two translation al springs, each with stiffness k =2550 kN/m, are added at 2c/5 from A and B (see figure part c), repeat part (a) to find dmin. Hint: Consider the pole and pair of springs as "springs in parallel."arrow_forward
- A bimetallic bar (or composite bar) of square cross sec lion with dimensions 2b X lb is construe ted of two different metals having module of elasticity E2and E2(see figure). The two parts of the bar have the same cross-sectional dimensions. The bar is compressed by forces P acting through rigid end plates. T h e line of action of t he loads has an eccentricity e of such magnitude that each part of the bar is stressed uniformly in compression. (a) Determine the axial forces Ptand P2in the two parts of the bar. (b} Determine the eccentricity e of the loads. (c) Determine the ratio C|/tr2 of the stresses in the two parts of the bar.arrow_forwardA prismatic bar AB of length L and solid circular cross section (diameter d) is loaded by a distributed torque of constant intensity t per unit distance (sec figure). Determine the maximum shear stress tmaxin the bar. Determine the angle of twist between t the ends of the bar.arrow_forwardTwo rigid bars are connected to each other by two linearly elastic springs. Before loads are applied, the lengths or the springs are such, that the bars are parallel and the springs are without stress. (a) Derive a formula for the displacement E4at point 4 when the load P is applied at joint 3 and moment PL is applied at joint 1. as shown in the figure part a. (Assume that the bars rotate through very small angles under the action of load P.) (b) Repeat part (a) if a rotational spring, kr= kL2, is now added at joint 6. What is the ratio of the deflection d4 in the figure part a to that in the figure part b ?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Everything About COMBINED LOADING in 10 Minutes! Mechanics of Materials; Author: Less Boring Lectures;https://www.youtube.com/watch?v=N-PlI900hSg;License: Standard youtube license