Mechanics of Materials (MindTap Course List)
9th Edition
ISBN: 9781337093347
Author: Barry J. Goodno, James M. Gere
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1, Problem 1.8.17P
A shock mount constructed as shown iu the figure is used to support a delicate instrument. The mount consists of an outer steel tube with inside diameter b. a central steel bar of diameter d that supports the load P, and a hollow rubber cylinder (height /r) bonded to the tube and bar
(a) Obtain a formula Tor the shear stress t in the rubber at a radial distance r from the center of the shock mount.
(b) Obtain a formula Tor the downward displacement S of the central bar due to the load P. assuming that G is the shear modulus of elasticity of the rubber and that the steel tube and bar are rigid.
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 1 Solutions
Mechanics of Materials (MindTap Course List)
Ch. 1 - Find support reactions at A and B and then...Ch. 1 - Find support reactions at A and B and then...Ch. 1 - Segments AB and BC of beam ABC are pin connected a...Ch. 1 - Segments A B and BCD of beam A BCD are pin...Ch. 1 - Segments AB and BCD of beam ABCD are pin connected...Ch. 1 - Consider the plane truss with a pin support at...Ch. 1 - A plane truss has a pin support at A and a roller...Ch. 1 - A plane truss has a pin support at F and a roller...Ch. 1 - Find support reactions at A and B and then use the...Ch. 1 - Find support reactions at 4 and Band then use the...
Ch. 1 - Repeat 1.3-9 but use the method of sections go...Ch. 1 - Repeat 1.3-10 but use the method of sections to...Ch. 1 - A space truss has three-dimensional pin supports...Ch. 1 - A space truss is restrained at joints O, A. B. and...Ch. 1 - 1.3-15 A space truss is restrained at joints A, B,...Ch. 1 - A space truss is restrained at joints A, B. and C,...Ch. 1 - A stepped shaft ABC consisting of two solid,...Ch. 1 - A stepped shaft ABC consisting of two solid,...Ch. 1 - A plane frame is restrained al joints A and C, as...Ch. 1 - A plane Frame is restrained at joints A and D, as...Ch. 1 - Find support reactions at A and D and then...Ch. 1 - Find support reactions at A and D and then...Ch. 1 - ,3-23 A 200-lb trap door (AD) is supported by a...Ch. 1 - A plane frame is constructed by using a pin...Ch. 1 - A plane Frame with pin supports at A and E has a...Ch. 1 - A plane frame with a pin support at A and roller...Ch. 1 - A 150-lb rigid bar AB. with friction less rollers...Ch. 1 - A plane frame has a pin support at A and roller...Ch. 1 - A special vehicle brake is clamped at O when the...Ch. 1 - Space frame A BCD is clamped at A, except it is...Ch. 1 - Space Frame ABC is clamped at A, except it is free...Ch. 1 - A soccer goal is subjected to gravity loads (in...Ch. 1 - An elliptical exerciser machine (see figure part...Ch. 1 - A mountain bike is moving along a flat path at...Ch. 1 - A hollow circular post ABC (see figure) supports a...Ch. 1 - A circular nylon pipe supports a downward load PA=...Ch. 1 - A circular tube AB is fixed at one end and free at...Ch. 1 - A force P of 70 N is applied by a rider to the...Ch. 1 - A bicycle rider wants to compare the effectiveness...Ch. 1 - A circular aluminum tube with a length of L = 420...Ch. 1 - The cross section of a concrete corner column that...Ch. 1 - A car weighing 130 kN when fully loaded is pulled...Ch. 1 - Two steel wines support a moveable overhead camera...Ch. 1 - A long re Lai nine: wall is braced by wood shores...Ch. 1 - A pickup truck tailgate supports a crate where Wc=...Ch. 1 - Solve the preceding problem if the mass of the...Ch. 1 - An L-shaped reinforced concrete slab 12 Ft X 12...Ch. 1 - A crane boom of mass 450 leg with its center of...Ch. 1 - Two gondolas on a ski lift are locked in the...Ch. 1 - A round bar ABC of length 2L (see figure) rotates...Ch. 1 - Two separate cables AC and BC support a sign...Ch. 1 - Imagine that a long steel wire hangs vertically...Ch. 1 - A steel riser pipe hangs from a drill rig located...Ch. 1 - Three different materials, designated A, B. and C,...Ch. 1 - The strength-to-weight ratio of a structural...Ch. 1 - A symmetrical framework consisting of three...Ch. 1 - A specimen of a methacrylate plastic is tested in...Ch. 1 - The data shown in the accompanying table are From...Ch. 1 - A bar made of structural steel having the...Ch. 1 - A bar of length 2.0 m is made of a structural...Ch. 1 - A bar made of structural steel having the...Ch. 1 - A circular bar of magnesium alloy is 750 mm long....Ch. 1 - An aluminum bar has length L = 6 ft and diameter d...Ch. 1 - A continuous cable (diameter 6 mm) with tension...Ch. 1 - A wine of length L = 4 ft and diameter d = 0.125...Ch. 1 - A high-strength steel bar used in a large crane...Ch. 1 - A round bar of 10 mm diameter is made of aluminum...Ch. 1 - A polyethylene bar with a diameter d, = 4.0 in. is...Ch. 1 - A square plastic bar (length LP,side dimension...Ch. 1 - A polyethylene bar having rectangular cross...Ch. 1 - A circular aluminum tube of length L = 600 mm is...Ch. 1 - A bar of monel metal with a length L = 9 in. and a...Ch. 1 - A tensile test is performed on a brass specimen 10...Ch. 1 - A hollow, brass circular pipe ABC (see figure)...Ch. 1 - Three round, copper alloy bars having the same...Ch. 1 - An angle bracket having a thickness t = 0.75 in....Ch. 1 - Truss members supporting a roof are connected to a...Ch. 1 - The upper deck ala foothill stadium is supported...Ch. 1 - The inclined ladder AB supports a house painter...Ch. 1 - The Force in the brake cable of the V-brake system...Ch. 1 - A steel plate of dimensions 2.5 × l.5 × 0.08 m and...Ch. 1 - A special-purpose eye boll with a shank diameter d...Ch. 1 - An elastomeric bearing pad consisting of two steel...Ch. 1 - A joint between iwo concrete slabs A and B is...Ch. 1 - A steel punch consists of two shafts: upper shaft...Ch. 1 - A joint between two glass plates A and B is filled...Ch. 1 - A punch for making a slotted hole in ID cards is...Ch. 1 - A steel riser pipe hangs from a drill rig located...Ch. 1 - A flexible connection consisting of rubber pads...Ch. 1 - .15 A hitch-mounted bicycle rack is designed to...Ch. 1 - The clamp shown in the figure supports a load...Ch. 1 - A shock mount constructed as shown iu the figure...Ch. 1 - Prob. 1.8.18PCh. 1 - A spray nozzle for a garden hose requires under a...Ch. 1 - A single steel strut AB with a diameter (a) Find...Ch. 1 - The top portion of a pole saw used to trim (a)...Ch. 1 - A cargo ship is tied down to marine boll arts at a...Ch. 1 - A basketball player hangs on the rim after (a)...Ch. 1 - A bicycle chain consists of a series of small...Ch. 1 - A bar of solid circular cross section is loaded in...Ch. 1 - .2 A torque T0is transmitted between two flanged...Ch. 1 - A tie-down on the deck of a sailboat consists of a...Ch. 1 - Two steel tubes are joined at B by four pins (dp=...Ch. 1 - A steel pad supporting heavy machinery rests on...Ch. 1 - A steel pad supporting heavy machinery rests on...Ch. 1 - A steel riser pipe hangs from a drill rig....Ch. 1 - The rear hatch of a van (BDCG in figure part a) is...Ch. 1 - A lifeboat hangs from two ship's davits. as shown...Ch. 1 - A cable and pulley system in the figure part a...Ch. 1 - A ship's spar is attached at the base of a mast by...Ch. 1 - What is the maximum possible value of the clamping...Ch. 1 - A metal bar AB of a weight Ills suspended by a...Ch. 1 - A plane truss is subjected to loads 2P and P at...Ch. 1 - A solid bar of circular cross section (diameter d)...Ch. 1 - A solid steel bar of a diameter d1= 60 mm has a...Ch. 1 - A sign of weight W is supported at its base by...Ch. 1 - The piston in an engine is attached to a...Ch. 1 - An aluminum tube is required to transmit an axial...Ch. 1 - A copper alloy pipe with a yield stress aY= 290...Ch. 1 - A horizontal beam AB with cross-sectional...Ch. 1 - Lateral bracing for an elevated pedestrian walkway...Ch. 1 - A plane truss has joint loads P, 2P, and 3P at...Ch. 1 - Cable DB supports canopy beam OABC as shown in the...Ch. 1 - Continuous cable ADS runs over a small...Ch. 1 - A suspender on a suspension bridge consist of a...Ch. 1 - A square steel tube of a length L = 20 ft and...Ch. 1 - A cable and pulley system at D is used to bring a...Ch. 1 - A pressurized circular cylinder has a sealed cover...Ch. 1 - A tubular post of outer diameter d2is guyed by two...Ch. 1 - A large precast concrete panel for a warehouse is...Ch. 1 - A steel column of hollow circular cross section is...Ch. 1 - An elevated jogging track is supported at...Ch. 1 - A flat bar of a widths b = 60 mm and thickness t =...Ch. 1 - Continuous cable A DB runs over a small friction...Ch. 1 - Continuous cable ADB runs over a small friction...Ch. 1 - Two bars AC and BC of the same material support a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A pressurized cylindrical tank with flat ends is loaded by torques T and tensile forces P (sec figure), The tank has a radius of r = 125 mm and wall thickness t = 6.5 mm. The internal pressure p = 7.25 MPa and the torque T = 850 N m. (a) What is the maximum permissible value of the forces P if the allowable tensile stress in the wall of the cylinder is 160 MPa? (b) If forces P = 400 kN, what is the maximum acceptable internal pressure in the tank?arrow_forwardA block R of rubber is confined between plane parallel walls of a steel block S (see figure). A uniformly distributed pressure p0 is applied to the top of the rubber block by a force F (a) Derive a formula for the lateral pressure p between the rubber and the steel. (Disregard friction between the rubber and the steel, and assume that the steel block is rigid when comp are d to the rubber.) (b) Derive a formula for the dilatation e of the rubber. (C) Derive a formula for the strain-energy density u of the rubber.arrow_forward-11 A solid steel bar (G = 11.8 X 106 psi ) of diameter d = 2,0 in. is subjected to torques T = 8.0 kip-in. acting in the directions shown in the figure. Determine the maximum shear, tensile, and compressive stresses in the bar and show these stresses on sketches of properly oriented stress elements. Determine the corresponding maximum strains (shear, tensile, and compressive) in the bar and show these strains on sketches of the deformed elements.arrow_forward
- -21 Plastic bar AB of rectangular cross section (6 = 0.75 in. and h = 1.5 in.) and length L = 2 Ft is Fixed at A and has a spring support (Ar = 18 kips/in.) at C (see figure). Initially, the bar and spring have no stress. When the temperature of the bar is raised hy foot. the compressive stress on an inclined plane pq at Lq = 1.5 Ft becomes 950 psi. Assume the spring is massless and is unaffected by the temperature change. Let a = 55 × l0-6p and E = 400 ksi. (a) What is the shear stresst9 on plane pq? What is angle 07 =1 Draw a stress element oriented to plane pq, and show the stresses acting on all laces of this element. (c) If the allowable normal stress is ± 1000 psi and the allowable shear stress is ±560 psi, what is the maximum permissible value of spring constant k if the allowable stress values in the bar are not to be exceeded? (d) What is the maximum permissible length L of the bar if the allowable stress values in the bar are not be exceeded? (Assume £ = IB kips/in.) (e) What is the maximum permissible temperature increase (A7") in the bar if the allowable stress values in the bar are not to be exceeded? (Assume L = 2 ft and k = L& kips/inarrow_forwardSolve the preceding problem for the following data: diameter LO m, thickness 48 mm, pressure 22 MPa, modulus 210 GPa. and Poisson's ratio 0.29arrow_forward: A hollow, pressurized sphere having a radius r = 4.8 in, and wall thickness t = 0.4 in. is lowered into a lake (see figure). The compressed air in the tank is at a pressure of 24 psi (gage pressure when the tank: is out of the water). At what depth D0will the wall of the tank be subjected to a compressive stress of 90 psi?arrow_forward
- The flat bars shown in parts a and b of the figure are subjected to tensile forces P = 2.5 kN. Each bar has thickness t = 5.0 mm. (a) For the bar with a circular hole, determine the maximum stresses for hole diameters d = 12 mm and d = 20 mm il" the width h = 60 mm. (b) For the stepped bar with shoulder fillets, determine the maximum stresses Tor fillet radii R = 6 mm and R = 10 mm if the bar widths are h = 60 mm and c = 40 mm.arrow_forwardA uniformly tapered aluminum-ally tube AB of circular cross section and length L is fixed against rotation at A and B, as shown in the figure. The outside diameters at the ends are dAand dA.A hollow section of lenth L/2 and constant thickness t = dA/10 is cast into the tube and extends from B half-way toward A. Torque T0is applied at L/2. (a) Find the reactive torques at the supports, TA and TB. Use numerical values as follows: dA = 2.5 in., L = 48., G = 309 × 106 psi, and T0= 40,000 in.-lb. (b) Repeat part (a) if the hollow sections has constant diameter dA.arrow_forward-22 Two tubes (AB, BC) of the same material arc connected by three pins (pin diameter = d ) just left of B as shown in the figure. Properties and dimensions for each tube are given in the figure. Torque 2ris applied at x = 2L/5 and uniformly distributed torque intensity tQ= 37/L is applied on tube BC. (a) Find the maximum value of load variable T(N m) based on allowable shear (tx) and bearing(cha ) stresses in the three pins which connect the two tubes at B. Use the following numerical properties: L = 1.5m, E = 74GPa, v = 0.33, dp= 18mm, ta=45MPa, =90 MPa, di=85 mm, di = T$ mm, and d3— 60 mm. (b) What is the maximum shear stress in the tubes for the applied torque in part (a)?arrow_forward
- A cylindrical pressure vessel having a radius r = 14 in. and wall thickness t = 0,5 in, is subjected to internal pressure p = 375 psi, In addition, a torque T = 90 kip-ft acts at each end of the cylinder (see figure), (a) Determine the maximum tensile stress ctniXand the maximum in-plane shear stress Tmjv in the wall of the cylinder. (b) If the allowable in-plane shear stress is 4.5 ksi, what is the maximum allowable torque T\ (c) If 7 = 150 kip-ft and allowable in-plane shear and allowable normal stresses are 4.5 ksi and 11.5 ksi, respectively, what is the minimum required wall thicknessarrow_forward-11 A rubber cube R of a side L = 3 in. and cross- sectional area A = 9 in2 is compressed inside a steel cube S by a force F = 5 lb that applies uniformly distributed pressure to the rubber. Assume E 0.3ksi and,, = 0.45. (a) Calculate the lateral pressure between the rubber and steel (disregard friction between the rubber and the steel, and assume that the steel block is rigid when compared to the rubber). (b) Calculate the change in volume of the rubber.arrow_forwardA square steel tube of a length L = 20 ft and width b2= 10.0 in. is hoisted by a crane (see figure). The lube hangs from a pin of diameter d that is held by the cables at points A and B. The cross section is a hollow square with an inner dimension b1= 8.5 in. and outer dimension b2= 10,0 in. The allowable shear stress in the pin is 8,700 psi. and the allowable bearing stress between the pin and the tube is 13,000 psi. Determine the minimum diameter of the pin in order to support the weight of the tube. Note: Disregard the rounded corners of the tube when calculating its weight.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Pressure Vessels Introduction; Author: Engineering and Design Solutions;https://www.youtube.com/watch?v=Z1J97IpFc2k;License: Standard youtube license