Mechanics of Materials (MindTap Course List)
9th Edition
ISBN: 9781337093347
Author: Barry J. Goodno, James M. Gere
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 1, Problem 1.10.9P
A square steel tube of a length L = 20 ft and width b2= 10.0 in. is hoisted by a crane (see figure). The lube hangs from a pin of diameter d that is held by the cables at points A and B. The cross section is a hollow square with an inner dimension b1= 8.5 in. and outer dimension b2= 10,0 in. The allowable shear stress in the pin is 8,700 psi. and the allowable bearing stress between the pin and the tube is 13,000 psi. Determine the minimum diameter of the pin in order to support the weight of the tube. Note: Disregard the rounded corners of the tube when calculating its weight.
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 1 Solutions
Mechanics of Materials (MindTap Course List)
Ch. 1 - Find support reactions at A and B and then...Ch. 1 - Find support reactions at A and B and then...Ch. 1 - Segments AB and BC of beam ABC are pin connected a...Ch. 1 - Segments A B and BCD of beam A BCD are pin...Ch. 1 - Segments AB and BCD of beam ABCD are pin connected...Ch. 1 - Consider the plane truss with a pin support at...Ch. 1 - A plane truss has a pin support at A and a roller...Ch. 1 - A plane truss has a pin support at F and a roller...Ch. 1 - Find support reactions at A and B and then use the...Ch. 1 - Find support reactions at 4 and Band then use the...
Ch. 1 - Repeat 1.3-9 but use the method of sections go...Ch. 1 - Repeat 1.3-10 but use the method of sections to...Ch. 1 - A space truss has three-dimensional pin supports...Ch. 1 - A space truss is restrained at joints O, A. B. and...Ch. 1 - 1.3-15 A space truss is restrained at joints A, B,...Ch. 1 - A space truss is restrained at joints A, B. and C,...Ch. 1 - A stepped shaft ABC consisting of two solid,...Ch. 1 - A stepped shaft ABC consisting of two solid,...Ch. 1 - A plane frame is restrained al joints A and C, as...Ch. 1 - A plane Frame is restrained at joints A and D, as...Ch. 1 - Find support reactions at A and D and then...Ch. 1 - Find support reactions at A and D and then...Ch. 1 - ,3-23 A 200-lb trap door (AD) is supported by a...Ch. 1 - A plane frame is constructed by using a pin...Ch. 1 - A plane Frame with pin supports at A and E has a...Ch. 1 - A plane frame with a pin support at A and roller...Ch. 1 - A 150-lb rigid bar AB. with friction less rollers...Ch. 1 - A plane frame has a pin support at A and roller...Ch. 1 - A special vehicle brake is clamped at O when the...Ch. 1 - Space frame A BCD is clamped at A, except it is...Ch. 1 - Space Frame ABC is clamped at A, except it is free...Ch. 1 - A soccer goal is subjected to gravity loads (in...Ch. 1 - An elliptical exerciser machine (see figure part...Ch. 1 - A mountain bike is moving along a flat path at...Ch. 1 - A hollow circular post ABC (see figure) supports a...Ch. 1 - A circular nylon pipe supports a downward load PA=...Ch. 1 - A circular tube AB is fixed at one end and free at...Ch. 1 - A force P of 70 N is applied by a rider to the...Ch. 1 - A bicycle rider wants to compare the effectiveness...Ch. 1 - A circular aluminum tube with a length of L = 420...Ch. 1 - The cross section of a concrete corner column that...Ch. 1 - A car weighing 130 kN when fully loaded is pulled...Ch. 1 - Two steel wines support a moveable overhead camera...Ch. 1 - A long re Lai nine: wall is braced by wood shores...Ch. 1 - A pickup truck tailgate supports a crate where Wc=...Ch. 1 - Solve the preceding problem if the mass of the...Ch. 1 - An L-shaped reinforced concrete slab 12 Ft X 12...Ch. 1 - A crane boom of mass 450 leg with its center of...Ch. 1 - Two gondolas on a ski lift are locked in the...Ch. 1 - A round bar ABC of length 2L (see figure) rotates...Ch. 1 - Two separate cables AC and BC support a sign...Ch. 1 - Imagine that a long steel wire hangs vertically...Ch. 1 - A steel riser pipe hangs from a drill rig located...Ch. 1 - Three different materials, designated A, B. and C,...Ch. 1 - The strength-to-weight ratio of a structural...Ch. 1 - A symmetrical framework consisting of three...Ch. 1 - A specimen of a methacrylate plastic is tested in...Ch. 1 - The data shown in the accompanying table are From...Ch. 1 - A bar made of structural steel having the...Ch. 1 - A bar of length 2.0 m is made of a structural...Ch. 1 - A bar made of structural steel having the...Ch. 1 - A circular bar of magnesium alloy is 750 mm long....Ch. 1 - An aluminum bar has length L = 6 ft and diameter d...Ch. 1 - A continuous cable (diameter 6 mm) with tension...Ch. 1 - A wine of length L = 4 ft and diameter d = 0.125...Ch. 1 - A high-strength steel bar used in a large crane...Ch. 1 - A round bar of 10 mm diameter is made of aluminum...Ch. 1 - A polyethylene bar with a diameter d, = 4.0 in. is...Ch. 1 - A square plastic bar (length LP,side dimension...Ch. 1 - A polyethylene bar having rectangular cross...Ch. 1 - A circular aluminum tube of length L = 600 mm is...Ch. 1 - A bar of monel metal with a length L = 9 in. and a...Ch. 1 - A tensile test is performed on a brass specimen 10...Ch. 1 - A hollow, brass circular pipe ABC (see figure)...Ch. 1 - Three round, copper alloy bars having the same...Ch. 1 - An angle bracket having a thickness t = 0.75 in....Ch. 1 - Truss members supporting a roof are connected to a...Ch. 1 - The upper deck ala foothill stadium is supported...Ch. 1 - The inclined ladder AB supports a house painter...Ch. 1 - The Force in the brake cable of the V-brake system...Ch. 1 - A steel plate of dimensions 2.5 × l.5 × 0.08 m and...Ch. 1 - A special-purpose eye boll with a shank diameter d...Ch. 1 - An elastomeric bearing pad consisting of two steel...Ch. 1 - A joint between iwo concrete slabs A and B is...Ch. 1 - A steel punch consists of two shafts: upper shaft...Ch. 1 - A joint between two glass plates A and B is filled...Ch. 1 - A punch for making a slotted hole in ID cards is...Ch. 1 - A steel riser pipe hangs from a drill rig located...Ch. 1 - A flexible connection consisting of rubber pads...Ch. 1 - .15 A hitch-mounted bicycle rack is designed to...Ch. 1 - The clamp shown in the figure supports a load...Ch. 1 - A shock mount constructed as shown iu the figure...Ch. 1 - Prob. 1.8.18PCh. 1 - A spray nozzle for a garden hose requires under a...Ch. 1 - A single steel strut AB with a diameter (a) Find...Ch. 1 - The top portion of a pole saw used to trim (a)...Ch. 1 - A cargo ship is tied down to marine boll arts at a...Ch. 1 - A basketball player hangs on the rim after (a)...Ch. 1 - A bicycle chain consists of a series of small...Ch. 1 - A bar of solid circular cross section is loaded in...Ch. 1 - .2 A torque T0is transmitted between two flanged...Ch. 1 - A tie-down on the deck of a sailboat consists of a...Ch. 1 - Two steel tubes are joined at B by four pins (dp=...Ch. 1 - A steel pad supporting heavy machinery rests on...Ch. 1 - A steel pad supporting heavy machinery rests on...Ch. 1 - A steel riser pipe hangs from a drill rig....Ch. 1 - The rear hatch of a van (BDCG in figure part a) is...Ch. 1 - A lifeboat hangs from two ship's davits. as shown...Ch. 1 - A cable and pulley system in the figure part a...Ch. 1 - A ship's spar is attached at the base of a mast by...Ch. 1 - What is the maximum possible value of the clamping...Ch. 1 - A metal bar AB of a weight Ills suspended by a...Ch. 1 - A plane truss is subjected to loads 2P and P at...Ch. 1 - A solid bar of circular cross section (diameter d)...Ch. 1 - A solid steel bar of a diameter d1= 60 mm has a...Ch. 1 - A sign of weight W is supported at its base by...Ch. 1 - The piston in an engine is attached to a...Ch. 1 - An aluminum tube is required to transmit an axial...Ch. 1 - A copper alloy pipe with a yield stress aY= 290...Ch. 1 - A horizontal beam AB with cross-sectional...Ch. 1 - Lateral bracing for an elevated pedestrian walkway...Ch. 1 - A plane truss has joint loads P, 2P, and 3P at...Ch. 1 - Cable DB supports canopy beam OABC as shown in the...Ch. 1 - Continuous cable ADS runs over a small...Ch. 1 - A suspender on a suspension bridge consist of a...Ch. 1 - A square steel tube of a length L = 20 ft and...Ch. 1 - A cable and pulley system at D is used to bring a...Ch. 1 - A pressurized circular cylinder has a sealed cover...Ch. 1 - A tubular post of outer diameter d2is guyed by two...Ch. 1 - A large precast concrete panel for a warehouse is...Ch. 1 - A steel column of hollow circular cross section is...Ch. 1 - An elevated jogging track is supported at...Ch. 1 - A flat bar of a widths b = 60 mm and thickness t =...Ch. 1 - Continuous cable A DB runs over a small friction...Ch. 1 - Continuous cable ADB runs over a small friction...Ch. 1 - Two bars AC and BC of the same material support a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The upper deck ala foothill stadium is supported by braces, each of which transfer a load P = 160 kips to the base of a column (see figure part a). A cap plate at the bottom of the brace distributes the load P to four flange pates (:1 = I in)t hrough a pin(d, = 2 in.) to two gusset plates t8 = l.5 in.) (see figure parts b and c). Determine the following quantities. (a) The average shear stress i in the pin. (b) The average bearing stress between the flange plates and the pin and also between the gusset plates and the pin Disregard friction between the plates. Determine the following quantities. (a) The average shear stress i in the pin. (b) The average bearing stress between the flange plates and the pin and also between the gusset plates and the pin (7j )L Disregard friction between the plates.arrow_forwardA steel riser pipe hangs from a drill rig located offshore in deep water (see figure). Separate segments are joined using bolted flange plages (see figure part b and photo). Assume that there are six bolts at each pipe segment connection. Assume that the total length of the riser pipe is L = 5000 ft: outer and inner diameters are d2= l6in.and d1= 15 in.; flange plate thickness t1= 1.75 in.; and bolt and washer diameters are db= 1.125 in..and dW. = 1.875 in., respectively. (a) If the entire length of the riser pipe is suspended in air. find the average normal stress a in each bolt, the average bearing stress abbeneath each washer, and the average shear stress t through the flange plate at each bolt location for the topmost bolted connection. (b) If the same riser pipe hangs from a drill rig at sea. what are the normal, bearing, and shear stresses in the connection? Obtain the weight densities of steel and sea water from Table I-1. Appendix I. Neglect the effect of buoyant foam casings on the riser pipearrow_forwardThe composite beam shown in the figure is simply supported and carries a total uniform load of 40 kN/m on a span length of 4.0 m. The beam is built of a southern pine wood member having cross-sectional dimensions of 150 mm × 250 mm and two brass plates of cross-sectional dimensions 30 mm × 150 mm. Determine the maximum stresses (7b and ctwin the brass and wood, respectively, if the moduli of elasticity are EB= % GPa and Ew= 14 GPa. (Disregard the weight of the beam.) Find the required thickness of the brass plates so that the plate and wood reach their allowable stress values of Eb= 70 MPa and t Ew= 8.5 MPa simultaneously under the maximum moment. What is the maximum moment?arrow_forward
- A simple beam of span length 3.2 m carries a uniform load of intensity 48 kN/m, The cross section of the beam is a hollow box with wood flanges and steel side plates, as shown in the figure. The wood flanges are 75 mm x 100 mm in cross section, and the steel plates are 300 mm deep. What is the required thickness t of the steel plates if the allowable stresses are 120 M Pa for the steel and 6,5 M Pa for the wood? (Assume that the moduli of elasticity for the steel and wood are 210 GPa and 10 GPa, respectively, and disregard the weight of the beam.)arrow_forwardTwo pipe columns (AB, FC) are pin-connected to a rigid beam (BCD), as shown in the figure. Each pipe column has a modulus of E, but heights (L1or L2) and outer diameters (d1or different for each column. Assume the inner diameter of each column is 3/4 of outer diameter. Uniformly distributed downward load q = 2PIL is applied over a distance of 3L/4 along BC, and concentrated load PIA is applied downward at D. (a) Derive a formula for the displacementarrow_forward-21 Plastic bar AB of rectangular cross section (6 = 0.75 in. and h = 1.5 in.) and length L = 2 Ft is Fixed at A and has a spring support (Ar = 18 kips/in.) at C (see figure). Initially, the bar and spring have no stress. When the temperature of the bar is raised hy foot. the compressive stress on an inclined plane pq at Lq = 1.5 Ft becomes 950 psi. Assume the spring is massless and is unaffected by the temperature change. Let a = 55 × l0-6p and E = 400 ksi. (a) What is the shear stresst9 on plane pq? What is angle 07 =1 Draw a stress element oriented to plane pq, and show the stresses acting on all laces of this element. (c) If the allowable normal stress is ± 1000 psi and the allowable shear stress is ±560 psi, what is the maximum permissible value of spring constant k if the allowable stress values in the bar are not to be exceeded? (d) What is the maximum permissible length L of the bar if the allowable stress values in the bar are not be exceeded? (Assume £ = IB kips/in.) (e) What is the maximum permissible temperature increase (A7") in the bar if the allowable stress values in the bar are not to be exceeded? (Assume L = 2 ft and k = L& kips/inarrow_forward
- A simple beam with a rectangular cross section (width, 3,5 inL; height, 12 in,) carries a trapczoi-dally distributed load of 1400 lb/ft at A and 1000 lb/ft at B on a span of 14 ft (sec figure). Find the principal stresses 2 and the maximum shear stress r__ at a cross section 2 ft from the left-hand support at each of the locations: (a) the neutral axis, (b) 2 in. above the neutral axis, and (c) the top of the beam. (Disregard the direct compressive stresses produced by the uniform load bearing against the top of the beam.)arrow_forwardA retaining wall 6 ft high is constructed of horizontal wood planks 2.5 in. thick (actual dimension) that are supported by vertical wood piles of a 12 in, diameter (actual dimension), as shown in the figure. The lateral earth pressure is pt=125 lb/ft2 at the top of the wall and p2= 425 lb/ft2 at the bottom. Assuming that the allowable stress in the wood is 1175 psi, calculate the maximum permissible spacing s of the piles. Find the required diameter of the wood piles so that piles and planks (f = 2.5 in.) reach the allowable stress at the same time. Hint: Observe that the spacing of the piles may be governed by the load-carrying capacity of either the planks or the piles. Consider the piles to act as cantilever beams subjected to a trapezoidal distribution of load, and consider the planks to act as simple beams between the piles. To be on the safe side, assume that the pressure on the bottom plank is uniform and equal to the maximum pressure.arrow_forwardA vertical pole of solid, circular cross section is twisted by horizontal forces P = 1100 lb acting at the ends of a rigid horizontal arm AB (see figure part a). The distance from the outside of the pole to the line of action of each force is c = 5.0 in. (see figure part b) and the pole height is L = 14in. (a) If the allowable shear stress in the pole is 4500 psi, what is the minimum required diameter dminof the pole? Find the torsional stiffness of the pole (kip-in./rad). Assume that G = 10,800 ksi. If two translational springs, each with stiffness k = 33 kips/in., are added at 2(75 from A and B (see figure part c), repeat part (a) to find dmin. Hint: Consider the pole and pair of springs as "springs in parallel."arrow_forward
- A beam with a wide-flange cross section (see figure) has the following dimensions: h = 120 mm, r = 10 mm, h = 300 mm, and /ij = 260 mm. The beam is simply supported with span length L = 3,0 im A concentrated load P = 120 kN acts at the midpoint of the span. At across section located 1.0 m from the left-hand support, determine the principal stresses tr, and tr2and the maximum shear stress Tmax at each of the following locations: (a) the top of the beam, (b) the top of the web, and (c) the neutral axisarrow_forwardCable DB supports canopy beam OABC as shown in the figure. Find the required cross-sectional area of cable BD if the allowable normal stress is 125 MPa. Determine the required diameter of the pins at 0, B, and D if the allowable stress in shear is 80 MPa. Assume that canopy beam weight is w = 8 kN. note The pins at 0, A, D and D are in double shear. Consider only the weight of the canopy; disregard the weight of cable DB.arrow_forwardA plastic bar of rectangular cross section (ft = 1.5 in. and h = 3 in.) fits snugly between rigid supporls at room temperature (68oF) but with no initial stress (see Figure). When the temperature of the bar is raised to 160oF, the compressive stress on an inclined plane pq at mid-span becomes 1700 psi. (a) What is the shear stress on plane pq? (Assume a = 60 × 10-6/*t and E = 450 × 103psi.) (b) Draw a stress element oriented to plane pq and show the stresses acting on all laces of this element. (c) If the allowable normal stress is 3400 psi and the allowable shear stress is 1650 psi. what is the maximum load P (in the positive x direction), which can be added at the quarter point (in addition to thermal effects given) without exceeding allowable stress values in the bar?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
BEARINGS BASICS and Bearing Life for Mechanical Design in 10 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=aU4CVZo3wgk;License: Standard Youtube License