The zero−bias capacitance of a silicon pn junction diode is C j o = 0.02 pF and the built−in potential is V b i = 0.80 V . The diode is reverse biased through a 47 − k Ω resistor and a voltage source. (a) For t < 0 , the applied voltage is 5 V and, at t = 0 , the applied voltage drops to zero volts. Estimate the time it takes for the diode voltage to change from 5 V to 1.5 V. (As an approximation, use the average diode capacitance between the two voltage levels.) (b) Repeat part (a) for an input voltage change from 0 V to 5 V and a diode voltage change from 0 V to 3.5 V. (Use the average diode capacitance between these two voltage levels.)
The zero−bias capacitance of a silicon pn junction diode is C j o = 0.02 pF and the built−in potential is V b i = 0.80 V . The diode is reverse biased through a 47 − k Ω resistor and a voltage source. (a) For t < 0 , the applied voltage is 5 V and, at t = 0 , the applied voltage drops to zero volts. Estimate the time it takes for the diode voltage to change from 5 V to 1.5 V. (As an approximation, use the average diode capacitance between the two voltage levels.) (b) Repeat part (a) for an input voltage change from 0 V to 5 V and a diode voltage change from 0 V to 3.5 V. (Use the average diode capacitance between these two voltage levels.)
Solution Summary: The author explains the value of the zero capacitance and the built-in potential of a pn junction diode.
The zero−bias capacitance of a silicon pn junction diode is
C
j
o
=
0.02
pF
and the built−in potential is
V
b
i
=
0.80
V
. The diode is reverse biased through a
47
−
k
Ω
resistor and a voltage source. (a) For
t
<
0
, the applied voltage is 5 V and, at
t
=
0
, the applied voltage drops to zero volts. Estimate the time it takes for the diode voltage to change from 5 V to 1.5 V. (As an approximation, use the average diode capacitance between the two voltage levels.) (b) Repeat part (a) for an input voltage change from 0 V to 5 V and a diode voltage change from 0 V to 3.5 V. (Use the average diode capacitance between these two voltage levels.)
64) answer just two from three the following terms:
A) Design ADC using the successive method if the Vmax=(3) volt, Vmin=(-2) volt, demonstrate the
designing system for vin-1.2 volt.
Successive Approximation ADC
Input Voltage-1.1 V
-4-3.5-3 -2.5 -2 -1.5 +1 -0.5
0 0.5 1 1.5 2 2.5 3
3.5
1
T
-8 -7 -6 -5
-3
+2 -1
0 1 2
3
4
5 6
7
X=1???
1st guess: -0.25 V
(too high)
X=11??
2nd guess: -2.25 V
(too low)
3rd guess: -1.25 V
(too low)
X=1110
X=111?
4th guess: -0.75 V
(too high)
Make successive guesses and
use a comparator to tell
whether your guess is too high
or too low.
Each guess determines one bit
of the answer and cuts the
number of remaining
possibilities in half.
Datacommunıcatıonin a commuinaction ASYNCHRONOUS TRANSMİTİON is used in this transmistion 7-bit chatacter will be transfered even parity will be used ,stop element is as 1,5 bits a)=select a chracter yourself and dısplay the signal transfered in this transmission , and calculate the overhead in this transmision
(i)
Find the inverse z-transform of the system H(z) =
for the following regions of
convergence. Write in the final answer for each case in the allocated rectangular box
below
(a) |z| 3
(c) 1
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Inductors Explained - The basics how inductors work working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=KSylo01n5FY;License: Standard Youtube License