Organic And Biological Chemistry
Organic And Biological Chemistry
7th Edition
ISBN: 9781305081079
Author: STOKER, H. Stephen (howard Stephen)
Publisher: Cengage Learning,
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 1, Problem 1.139EP

(a)

Interpretation Introduction

Interpretation:

Structural formula for the given halogenated hydrocarbon has to be drawn.

Concept Introduction:

The derivative of alkane with halogen instead of one or more hydrogen atoms is known as halogenated alkane.  If the same is present in cycloalkane, then it is known as halogenated cycloalkane.  They are product of reaction between alkane/cycloalkane with halogens.

IUPAC nomenclature for halogenated alkanes/cycloalkanes:

Similar to the alkyl groups, the halogen is also treated as substituents present on the carbon chain.  They are called as fluoro-, chloro-, bromo-, and iodo-.

If the carbon chain contains both alkyl and halogen, they both are considered of equal ranks.  The numbering is done in a way so that the substituents get the least number, whether it is an alkyl or a halo group.

In IUPAC names, the groups that are present on the carbon chain are written in alphabetical order.

Common names:

Halogenated alkanes are also named as alkyl halides.  These are not IUPAC names.  They are common names.  In a common name, two parts are present.  First part is the name of the hydrocarbon (alkyl group).  Second part gives the halogen present in the compound.  The halogen is considered as though it is present as an ion even though no ions are present.

Structural formula for halogenated hydrocabons:

From the IUPAC name or common name that is given for the halogenated hydrocarbon, the structural formula can be drawn.  The parent hydrocarbon is present in the end when considering IUPAC name and in common name, the parent hydrocarbon is present in the first part as an alkyl group.

(b)

Interpretation Introduction

Interpretation:

Structural formula for the given halogenated hydrocarbon has to be drawn.

Concept Introduction:

The derivative of alkane with halogen instead of one or more hydrogen atoms is known as halogenated alkane.  If the same is present in cycloalkane, then it is known as halogenated cycloalkane.  They are product of reaction between alkane/cycloalkane with halogens.

IUPAC nomenclature for halogenated alkanes/cycloalkanes:

Similar to the alkyl groups, the halogen is also treated as substituents present on the carbon chain.  They are called as fluoro-, chloro-, bromo-, and iodo-.

If the carbon chain contains both alkyl and halogen, they both are considered of equal ranks.  The numbering is done in a way so that the substituents get the least number, whether it is an alkyl or a halo group.

In IUPAC names, the groups that are present on the carbon chain are written in alphabetical order.

Common names:

Halogenated alkanes are also named as alkyl halides.  These are not IUPAC names.  They are common names.  In a common name, two parts are present.  First part is the name of the hydrocarbon (alkyl group).  Second part gives the halogen present in the compound.  The halogen is considered as though it is present as an ion even though no ions are present.

Structural formula for halogenated hydrocabons:

From the IUPAC name or common name that is given for the halogenated hydrocarbon, the structural formula can be drawn.  The parent hydrocarbon is present in the end when considering IUPAC name and in common name, the parent hydrocarbon is present in the first part as an alkyl group.

(c)

Interpretation Introduction

Interpretation:

Structural formula for the given halogenated hydrocarbon has to be drawn.

Concept Introduction:

The derivative of alkane with halogen instead of one or more hydrogen atoms is known as halogenated alkane.  If the same is present in cycloalkane, then it is known as halogenated cycloalkane.  They are product of reaction between alkane/cycloalkane with halogens.

IUPAC nomenclature for halogenated alkanes/cycloalkanes:

Similar to the alkyl groups, the halogen is also treated as substituents present on the carbon chain.  They are called as fluoro-, chloro-, bromo-, and iodo-.

If the carbon chain contains both alkyl and halogen, they both are considered of equal ranks.  The numbering is done in a way so that the substituents get the least number, whether it is an alkyl or a halo group.

In IUPAC names, the groups that are present on the carbon chain are written in alphabetical order.

Common names:

Halogenated alkanes are also named as alkyl halides.  These are not IUPAC names.  They are common names.  In a common name, two parts are present.  First part is the name of the hydrocarbon (alkyl group).  Second part gives the halogen present in the compound.  The halogen is considered as though it is present as an ion even though no ions are present.

Structural formula for halogenated hydrocabons:

From the IUPAC name or common name that is given for the halogenated hydrocarbon, the structural formula can be drawn.  The parent hydrocarbon is present in the end when considering IUPAC name and in common name, the parent hydrocarbon is present in the first part as an alkyl group.

(d)

Interpretation Introduction

Interpretation:

Structural formula for the given halogenated hydrocarbon has to be drawn.

Concept Introduction:

The derivative of alkane with halogen instead of one or more hydrogen atoms is known as halogenated alkane.  If the same is present in cycloalkane, then it is known as halogenated cycloalkane.  They are product of reaction between alkane/cycloalkane with halogens.

IUPAC nomenclature for halogenated alkanes/cycloalkanes:

Similar to the alkyl groups, the halogen is also treated as substituents present on the carbon chain.  They are called as fluoro-, chloro-, bromo-, and iodo-.

If the carbon chain contains both alkyl and halogen, they both are considered of equal ranks.  The numbering is done in a way so that the substituents get the least number, whether it is an alkyl or a halo group.

In IUPAC names, the groups that are present on the carbon chain are written in alphabetical order.

Common names:

Halogenated alkanes are also named as alkyl halides.  These are not IUPAC names.  They are common names.  In a common name, two parts are present.  First part is the name of the hydrocarbon (alkyl group).  Second part gives the halogen present in the compound.  The halogen is considered as though it is present as an ion even though no ions are present.

Structural formula for halogenated hydrocabons:

From the IUPAC name or common name that is given for the halogenated hydrocarbon, the structural formula can be drawn.  The parent hydrocarbon is present in the end when considering IUPAC name and in common name, the parent hydrocarbon is present in the first part as an alkyl group.

Blurred answer
Students have asked these similar questions
Don't used Ai solution
Don't used Ai solution
Please correct answer and don't used hand raiting

Chapter 1 Solutions

Organic And Biological Chemistry

Ch. 1.5 - Prob. 2QQCh. 1.5 - Prob. 3QQCh. 1.6 - Prob. 1QQCh. 1.6 - Prob. 2QQCh. 1.6 - Prob. 3QQCh. 1.6 - Prob. 4QQCh. 1.7 - Prob. 1QQCh. 1.7 - Prob. 2QQCh. 1.8 - Prob. 1QQCh. 1.8 - Prob. 2QQCh. 1.8 - Prob. 3QQCh. 1.8 - Prob. 4QQCh. 1.8 - Prob. 5QQCh. 1.8 - Prob. 6QQCh. 1.8 - Prob. 7QQCh. 1.9 - Prob. 1QQCh. 1.9 - Prob. 2QQCh. 1.10 - Prob. 1QQCh. 1.10 - Prob. 2QQCh. 1.11 - Prob. 1QQCh. 1.11 - Prob. 2QQCh. 1.11 - Prob. 3QQCh. 1.12 - Prob. 1QQCh. 1.12 - Prob. 2QQCh. 1.12 - Prob. 3QQCh. 1.13 - Prob. 1QQCh. 1.13 - Prob. 2QQCh. 1.13 - Prob. 3QQCh. 1.14 - Prob. 1QQCh. 1.14 - Prob. 2QQCh. 1.14 - Prob. 3QQCh. 1.15 - Prob. 1QQCh. 1.15 - Prob. 2QQCh. 1.16 - Prob. 1QQCh. 1.16 - Prob. 2QQCh. 1.16 - Prob. 3QQCh. 1.17 - Prob. 1QQCh. 1.17 - Prob. 2QQCh. 1.17 - Prob. 3QQCh. 1.17 - Prob. 4QQCh. 1.18 - Prob. 1QQCh. 1.18 - Prob. 2QQCh. 1.18 - Prob. 3QQCh. 1.18 - Prob. 4QQCh. 1 - Prob. 1.1EPCh. 1 - Prob. 1.2EPCh. 1 - Prob. 1.3EPCh. 1 - Prob. 1.4EPCh. 1 - Indicate whether each of the following situations...Ch. 1 - Indicate whether each of the following situations...Ch. 1 - Prob. 1.7EPCh. 1 - Prob. 1.8EPCh. 1 - What is the difference between a saturated...Ch. 1 - What structural feature is present in an...Ch. 1 - Prob. 1.11EPCh. 1 - Prob. 1.12EPCh. 1 - Prob. 1.13EPCh. 1 - Prob. 1.14EPCh. 1 - Prob. 1.15EPCh. 1 - Prob. 1.16EPCh. 1 - Convert the expanded structural formulas in...Ch. 1 - Prob. 1.18EPCh. 1 - Prob. 1.19EPCh. 1 - Prob. 1.20EPCh. 1 - Prob. 1.21EPCh. 1 - Prob. 1.22EPCh. 1 - Prob. 1.23EPCh. 1 - Prob. 1.24EPCh. 1 - Prob. 1.25EPCh. 1 - Prob. 1.26EPCh. 1 - Indicate whether each of the following would be...Ch. 1 - Indicate whether each of the following would be...Ch. 1 - Prob. 1.29EPCh. 1 - Explain why two different straight-chain alkanes...Ch. 1 - With the help of Table 12-1, indicate how many...Ch. 1 - Prob. 1.32EPCh. 1 - How many of the numerous eight-carbon alkane...Ch. 1 - How many of the numerous seven-carbon alkane...Ch. 1 - For each of the following pairs of structures,...Ch. 1 - For each of the following pairs of structures,...Ch. 1 - Convert each of the following linear condensed...Ch. 1 - Prob. 1.38EPCh. 1 - Prob. 1.39EPCh. 1 - Prob. 1.40EPCh. 1 - Prob. 1.41EPCh. 1 - Prob. 1.42EPCh. 1 - Prob. 1.43EPCh. 1 - Prob. 1.44EPCh. 1 - Prob. 1.45EPCh. 1 - Prob. 1.46EPCh. 1 - Prob. 1.47EPCh. 1 - Prob. 1.48EPCh. 1 - Prob. 1.49EPCh. 1 - Prob. 1.50EPCh. 1 - Prob. 1.51EPCh. 1 - Prob. 1.52EPCh. 1 - Draw a condensed structural formula for each of...Ch. 1 - Draw a condensed structural formula for each of...Ch. 1 - Prob. 1.55EPCh. 1 - For each of the alkanes in Problem 12-54,...Ch. 1 - Explain why the name given for each of the...Ch. 1 - Prob. 1.58EPCh. 1 - Indicate whether or not the two alkanes in each of...Ch. 1 - Prob. 1.60EPCh. 1 - How many of the 18 C8 alkane constitutional...Ch. 1 - How many of the nine C7 alkane constitutional...Ch. 1 - Prob. 1.63EPCh. 1 - Prob. 1.64EPCh. 1 - Prob. 1.65EPCh. 1 - Prob. 1.66EPCh. 1 - Do the line-angle structural formulas in each of...Ch. 1 - Do the line-angle structural formulas in each of...Ch. 1 - Convert each of the condensed structural formulas...Ch. 1 - Convert each of the condensed structural formulas...Ch. 1 - Assign an IUPAC name to each of the compounds in...Ch. 1 - Prob. 1.72EPCh. 1 - Prob. 1.73EPCh. 1 - Prob. 1.74EPCh. 1 - For each of the alkane structures in Problem...Ch. 1 - For each of the alkane structures in Problem...Ch. 1 - Prob. 1.77EPCh. 1 - Prob. 1.78EPCh. 1 - Prob. 1.79EPCh. 1 - Prob. 1.80EPCh. 1 - Prob. 1.81EPCh. 1 - Prob. 1.82EPCh. 1 - Draw condensed structural formulas for the...Ch. 1 - Draw condensed structural formulas for the...Ch. 1 - To which carbon atoms in a hexane molecule can...Ch. 1 - Prob. 1.86EPCh. 1 - Prob. 1.87EPCh. 1 - Prob. 1.88EPCh. 1 - Give an acceptable alternate name for each of the...Ch. 1 - Prob. 1.90EPCh. 1 - Prob. 1.91EPCh. 1 - Prob. 1.92EPCh. 1 - Prob. 1.93EPCh. 1 - Prob. 1.94EPCh. 1 - What is the molecular formula for each of the...Ch. 1 - Prob. 1.96EPCh. 1 - Prob. 1.97EPCh. 1 - Prob. 1.98EPCh. 1 - Prob. 1.99EPCh. 1 - How many secondary carbon atoms are present in...Ch. 1 - Assign an IUPAC name to each of the following...Ch. 1 - Assign an IUPAC name to each of the following...Ch. 1 - Prob. 1.103EPCh. 1 - Prob. 1.104EPCh. 1 - Prob. 1.105EPCh. 1 - Prob. 1.106EPCh. 1 - What is the molecular formula for each of the...Ch. 1 - Prob. 1.108EPCh. 1 - Prob. 1.109EPCh. 1 - Prob. 1.110EPCh. 1 - Prob. 1.111EPCh. 1 - Prob. 1.112EPCh. 1 - Determine whether cistrans isomerism is possible...Ch. 1 - Prob. 1.114EPCh. 1 - Prob. 1.115EPCh. 1 - Prob. 1.116EPCh. 1 - Prob. 1.117EPCh. 1 - Indicate whether the members of each of the...Ch. 1 - Prob. 1.119EPCh. 1 - Prob. 1.120EPCh. 1 - Prob. 1.121EPCh. 1 - Prob. 1.122EPCh. 1 - Prob. 1.123EPCh. 1 - Which member in each of the following pairs of...Ch. 1 - Prob. 1.125EPCh. 1 - Prob. 1.126EPCh. 1 - Answer the following questions about the...Ch. 1 - Prob. 1.128EPCh. 1 - Prob. 1.129EPCh. 1 - Prob. 1.130EPCh. 1 - Write molecular formulas for all the possible...Ch. 1 - Write molecular formulas for all the possible...Ch. 1 - Prob. 1.133EPCh. 1 - Prob. 1.134EPCh. 1 - Prob. 1.135EPCh. 1 - Assign an IUPAC name to each of the following...Ch. 1 - Prob. 1.137EPCh. 1 - Prob. 1.138EPCh. 1 - Prob. 1.139EPCh. 1 - Prob. 1.140EPCh. 1 - Prob. 1.141EPCh. 1 - Prob. 1.142EPCh. 1 - Prob. 1.143EPCh. 1 - Prob. 1.144EPCh. 1 - Prob. 1.145EPCh. 1 - Prob. 1.146EPCh. 1 - Give the IUPAC names for the eight isomeric...Ch. 1 - Prob. 1.148EP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chapter 4 Alkanes and Cycloalkanes Lesson 2; Author: Linda Hanson;https://www.youtube.com/watch?v=AL_CM_Btef4;License: Standard YouTube License, CC-BY
Chapter 4 Alkanes and Cycloalkanes Lesson 1; Author: Linda Hanson;https://www.youtube.com/watch?v=PPIa6EHJMJw;License: Standard Youtube License