Concept explainers
(a)
Interpretation:
The unsubstituted cycloalkane that contains six carbon atoms will be solid, liquid, or gas at room temperature has to be given.
Concept Introduction:
Organic compounds are represented shortly by the molecular formula and structural formula. Each and every compound has its own molecular formula. Compounds can have same molecular formula but not same structural formula.
Alkanes and cycloalkanes are hydrocarbons. They are nonpolar molecules. Water is a polar molecule. Therefore, alkanes and cycloalkanes do not get solubilized in water. In other words, alkanes and cycloalkanes are insoluble in water.
Regarding density, alkanes and cycloalkanes have density lower than water. When alkanes and cycloalkanes are mixed with water, two layers are formed which is a result of insolubility. Alkanes and cycloalkanes are present on top of water layer which is due to lesser density.
Boiling point of alkanes and cycloalkanes increase with an increase in carbon‑chain length or the ring size. When considering the continuous‑chain alkanes, the boiling point of alkanes increases about
When branching happens in the carbon chain, it lowers the boiling point of alkanes. In simple words, unbranched alkanes have more boiling point than branched alkanes with the same number of carbon atoms.
Cycloalkanes have higher boiling point compared to noncyclic alkanes with the same number of carbon atoms. This is due to the more rigid and more symmetrical structures that occur in cyclic systems. Cyclopropane and cyclobutane are gases at room temperature. Cyclopentane to cyclooctane are liquids at room temperature.
(b)
Interpretation:
The unsubstituted cycloalkane that contains six carbon atoms is more or less dense than water has to be given.
Concept Introduction:
Organic compounds are represented shortly by the molecular formula and structural formula. Each and every compound has its own molecular formula. Compounds can have same molecular formula but not same structural formula.
Alkanes are linear chain saturated hydrocarbons and cycloalkanes are cyclic carbon chain saturated hydrocarbons. They both occur naturally.
Alkanes and cycloalkanes are hydrocarbons. They are nonpolar molecules. Water is a polar molecule. Therefore, alkanes and cycloalkanes do not get solubilized in water. In other words, alkanes and cycloalkanes are insoluble in water.
Regarding density, alkanes and cycloalkanes have density lower than water. When alkanes and cycloalkanes are mixed with water, two layers are formed which is a result of insolubility. Alkanes and cycloalkanes are present on top of water layer which is due to lesser density.
Boiling point of alkanes and cycloalkanes increase with an increase in carbon‑chain length or the ring size. When considering the continuous‑chain alkanes, the boiling point of alkanes increases about
When branching happens in the carbon chain, it lowers the boiling point of alkanes. In simple words, unbranched alkanes have more boiling point than branched alkanes with the same number of carbon atoms.
Cycloalkanes have higher boiling point compared to noncyclic alkanes with the same number of carbon atoms. This is due to the more rigid and more symmetrical structures that occur in cyclic systems. Cyclopropane and cyclobutane are gases at room temperature. Cyclopentane to cyclooctane are liquids at room temperature.
(c)
Interpretation:
The unsubstituted cycloalkane that contains six carbon atoms soluble or insoluble in water has to be given.
Concept Introduction:
Organic compounds are represented shortly by the molecular formula and structural formula. Each and every compound has its own molecular formula. Compounds can have same molecular formula but not same structural formula.
Alkanes are linear chain saturated hydrocarbons and cycloalkanes are cyclic carbon chain saturated hydrocarbons. They both occur naturally.
Alkanes and cycloalkanes are hydrocarbons. They are nonpolar molecules. Water is a polar molecule. Therefore, alkanes and cycloalkanes do not get solubilized in water. In other words, alkanes and cycloalkanes are insoluble in water.
Regarding density, alkanes and cycloalkanes have density lower than water. When alkanes and cycloalkanes are mixed with water, two layers are formed which is a result of insolubility. Alkanes and cycloalkanes are present on top of water layer which is due to lesser density.
Boiling point of alkanes and cycloalkanes increase with an increase in carbon‑chain length or the ring size. When considering the continuous‑chain alkanes, the boiling point of alkanes increases about
When branching happens in the carbon chain, it lowers the boiling point of alkanes. In simple words, unbranched alkanes have more boiling point than branched alkanes with the same number of carbon atoms.
Cycloalkanes have higher boiling point compared to noncyclic alkanes with the same number of carbon atoms. This is due to the more rigid and more symmetrical structures that occur in cyclic systems. Cyclopropane and cyclobutane are gases at room temperature. Cyclopentane to cyclooctane are liquids at room temperature.
(d)
Interpretation:
The unsubstituted cycloalkane that contains six carbon atoms will be flammable or inflammable has to be given.
Concept Introduction:
Organic compounds are represented shortly by the molecular formula and structural formula. Each and every compound has its own molecular formula. Compounds can have same molecular formula but not same structural formula.
Alkanes are linear chain saturated hydrocarbons and cycloalkanes are cyclic carbon chain saturated hydrocarbons. They both occur naturally.
Alkanes and cycloalkanes are hydrocarbons. They are nonpolar molecules. Water is a polar molecule. Therefore, alkanes and cycloalkanes do not get solubilized in water. In other words, alkanes and cycloalkanes are insoluble in water.
Regarding density, alkanes and cycloalkanes have density lower than water. When alkanes and cycloalkanes are mixed with water, two layers are formed which is a result of insolubility. Alkanes and cycloalkanes are present on top of water layer which is due to lesser density.
Boiling point of alkanes and cycloalkanes increase with an increase in carbon‑chain length or the ring size. When considering the continuous‑chain alkanes, the boiling point of alkanes increases about
When branching happens in the carbon chain, it lowers the boiling point of alkanes. In simple words, unbranched alkanes have more boiling point than branched alkanes with the same number of carbon atoms.
Cycloalkanes have higher boiling point compared to noncyclic alkanes with the same number of carbon atoms. This is due to the more rigid and more symmetrical structures that occur in cyclic systems. Cyclopropane and cyclobutane are gases at room temperature. Cyclopentane to cyclooctane are liquids at room temperature.
Want to see the full answer?
Check out a sample textbook solutionChapter 1 Solutions
Organic And Biological Chemistry
- Nonearrow_forward4. Draw and label all possible isomers for [M(py)3(DMSO)2(CI)] (py = pyridine, DMSO dimethylsulfoxide).arrow_forwardThe emission data in cps displayed in Table 1 is reported to two decimal places by the chemist. However, the instrument output is shown in Table 2. Table 2. Iron emission from ICP-AES Sample Blank Standard Emission, cps 579.503252562 9308340.13122 Unknown Sample 343.232365741 Did the chemist make the correct choice in how they choose to display the data up in Table 1? Choose the best explanation from the choices below. No. Since the instrument calculates 12 digits for all values, they should all be kept and not truncated. Doing so would eliminate significant information. No. Since the instrument calculates 5 decimal places for the standard, all of the values should be limited to the same number. The other decimal places are not significant for the blank and unknown sample. Yes. The way Saman made the standards was limited by the 250-mL volumetric flask. This glassware can report values to 2 decimal places, and this establishes our number of significant figures. Yes. Instrumental data…arrow_forward
- 7. Draw a curved arrow mechanism for the following reaction. HO cat. HCI OH in dioxane with 4A molecular sievesarrow_forwardTry: Convert the given 3D perspective structure to Newman projection about C2 - C3 bond (C2 carbon in the front). Also, show Newman projection of other possible staggered conformers and circle the most stable conformation. Use the template shown. F H3C Br Harrow_forwardNonearrow_forward
- 16. Consider the probability distribution p(x) = ax", 0 ≤ x ≤ 1 for a positive integer n. A. Derive an expression for the constant a, to normalize p(x). B. Compute the average (x) as a function of n. C. Compute σ2 = (x²) - (x)², the variance of x, as a function of n.arrow_forward451. Use the diffusion model from lecture that showed the likelihood of mixing occurring in a lattice model with eight lattice sites: Case Left Right A B C Permeable Barrier → and show that with 2V lattice sites on each side of the permeable barrier and a total of 2V white particles and 2V black particles, that perfect de-mixing (all one color on each side of the barrier) becomes increasingly unlikely as V increases.arrow_forward46. Consider an ideal gas that occupies 2.50 dm³ at a pressure of 3.00 bar. If the gas is compressed isothermally at a constant external pressure so that the final volume is 0.500 dm³, calculate the smallest value Rest can have. Calculate the work involved using this value of Rext.arrow_forward
- Organic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning