Concept explainers
(a)
Interpretation:
Structural formula for all the possible monochlorinated products obtained from halogenation of ethane has to be written.
Concept Introduction:
Alkanes are not completely inert. Two important reactions that alkanes undergo are combustion and halogenation.
Combustion reaction is the one where reaction occurs between substance and oxygen which proceeds with evolution of light and heat. Due to the heat produced when alkanes are made to undergo combustion with oxygen, it is used as fuel.
Halogenation is a
Halogenation reaction of alkane is an example of substitution reaction. This is a reaction where a part of reacting molecule replaces an atom or group of atoms in hydrocarbon or hydrocarbon derivative.
Cycloalkanes are also similar to those of alkanes. Cycloalkanes also undergo combustion and halogenation reaction.
(a)
Answer to Problem 1.133EP
The monochlorinated product of ethane is,
Explanation of Solution
Halogenation is a chemical reaction between a substance and halogen. The product of halogenation reaction is that one or more halogens are incorporated into molecules of the substance. Halogenation of hydrocarbon gives hydrocarbon derivatives as product where halogen atoms are substituted instead of hydrogen atoms.
Halogenation reaction of alkane is an example of substitution reaction. This is a reaction where a part of reacting molecule replaces an atom or group of atoms in hydrocarbon or hydrocarbon derivative.
General reaction for halogenation of alkane can be given as shown below,
The halogenation reaction takes place giving a mixture of products where the hydrogen atoms present in the alkane are substituted randomly.
Given alkane is ethane. This has a total of two carbon atoms which are of same nature. Only one kind of hydrogen is present in ethane. Therefore, chlorinaton of ethane will lead to the same monochlorinated product as shown below,
The structural formula for monochlorinated product of ethane was drawn.
(b)
Interpretation:
Structural formula for all the possible monochlorinated products obtained from halogenation of butane has to be written.
Concept Introduction:
Alkanes are linear chain saturated hydrocarbons. The reactivity of alkanes are very less. They can be heated for a very long time in strong acids and bases without any reaction. Even strong reducing and strong oxidizing agents have less effect on alkanes.
Alkanes are not completely inert. Two important reactions that alkanes undergo are combustion and halogenation.
Combustion reaction is the one where reaction occurs between substance and oxygen which proceeds with evolution of light and heat. Due to the heat produced when alkanes are made to undergo combustion with oxygen, it is used as fuel.
Halogenation is a chemical reaction between a substance and halogen. The product of halogenation reaction is that one or more halogens are incorporated into molecules of the substance. Halogenation of hydrocarbon gives hydrocarbon derivatives as product where halogen atoms are substituted instead of hydrogen atoms.
Halogenation reaction of alkane is an example of substitution reaction. This is a reaction where a part of reacting molecule replaces an atom or group of atoms in hydrocarbon or hydrocarbon derivative.
Cycloalkanes are also similar to those of alkanes. Cycloalkanes also undergo combustion and halogenation reaction.
(b)
Answer to Problem 1.133EP
The monochlorinated products of butane are,
Explanation of Solution
Halogenation is a chemical reaction between a substance and halogen. The product of halogenation reaction is that one or more halogens are incorporated into molecules of the substance. Halogenation of hydrocarbon gives hydrocarbon derivatives as product where halogen atoms are substituted instead of hydrogen atoms.
Halogenation reaction of alkane is an example of substitution reaction. This is a reaction where a part of reacting molecule replaces an atom or group of atoms in hydrocarbon or hydrocarbon derivative.
General reaction for halogenation of alkane can be given as shown below,
The halogenation reaction takes place giving a mixture of products where the hydrogen atoms present in the alkane are substituted randomly.
Given alkane is butane. Two kinds of hydrogen are present in butane. Therefore, chlorination of butane will lead to two monochlorinated products as shown below,
The structural formula for monochlorinated products of butane was drawn.
(c)
Interpretation:
Structural formula for all the possible monochlorinated products obtained from halogenation of 2-methylpropane has to be written.
Concept Introduction:
Alkanes are linear chain saturated hydrocarbons. The reactivity of alkanes are very less. They can be heated for a very long time in strong acids and bases without any reaction. Even strong reducing and strong oxidizing agents have less effect on alkanes.
Alkanes are not completely inert. Two important reactions that alkanes undergo are combustion and halogenation.
Combustion reaction is the one where reaction occurs between substance and oxygen which proceeds with evolution of light and heat. Due to the heat produced when alkanes are made to undergo combustion with oxygen, it is used as fuel.
Halogenation is a chemical reaction between a substance and halogen. The product of halogenation reaction is that one or more halogens are incorporated into molecules of the substance. Halogenation of hydrocarbon gives hydrocarbon derivatives as product where halogen atoms are substituted instead of hydrogen atoms.
Halogenation reaction of alkane is an example of substitution reaction. This is a reaction where a part of reacting molecule replaces an atom or group of atoms in hydrocarbon or hydrocarbon derivative.
Cycloalkanes are also similar to those of alkanes. Cycloalkanes also undergo combustion and halogenation reaction.
(c)
Answer to Problem 1.133EP
The monochlorinated products of 2-methylpropane are,
Explanation of Solution
Halogenation is a chemical reaction between a substance and halogen. The product of halogenation reaction is that one or more halogens are incorporated into molecules of the substance. Halogenation of hydrocarbon gives hydrocarbon derivatives as product where halogen atoms are substituted instead of hydrogen atoms.
Halogenation reaction of alkane is an example of substitution reaction. This is a reaction where a part of reacting molecule replaces an atom or group of atoms in hydrocarbon or hydrocarbon derivative.
General reaction for halogenation of alkane can be given as shown below,
The halogenation reaction takes place giving a mixture of products where the hydrogen atoms present in the alkane are substituted randomly.
Given alkane is 2-methylpropane. Two kinds of hydrogen are present in 2-methylpropane. Therefore, chlorination of 2-methylpropane will lead to two monochlorinated products as shown below,
The structural formula for monochlorinated products of 2-methylpropane was drawn.
(d)
Interpretation:
Structural formula for all the possible monochlorinated products obtained from halogenation of cyclopentane has to be written.
Concept Introduction:
Alkanes are linear chain saturated hydrocarbons. The reactivity of alkanes are very less. They can be heated for a very long time in strong acids and bases without any reaction. Even strong reducing and strong oxidizing agents have less effect on alkanes.
Alkanes are not completely inert. Two important reactions that alkanes undergo are combustion and halogenation.
Combustion reaction is the one where reaction occurs between substance and oxygen which proceeds with evolution of light and heat. Due to the heat produced when alkanes are made to undergo combustion with oxygen, it is used as fuel.
Halogenation is a chemical reaction between a substance and halogen. The product of halogenation reaction is that one or more halogens are incorporated into molecules of the substance. Halogenation of hydrocarbon gives hydrocarbon derivatives as product where halogen atoms are substituted instead of hydrogen atoms.
Halogenation reaction of alkane is an example of substitution reaction. This is a reaction where a part of reacting molecule replaces an atom or group of atoms in hydrocarbon or hydrocarbon derivative.
Cycloalkanes are also similar to those of alkanes. Cycloalkanes also undergo combustion and halogenation reaction.
(d)
Answer to Problem 1.133EP
The monochlorinated product of cyclopentane is,
Explanation of Solution
Halogenation is a chemical reaction between a substance and halogen. The product of halogenation reaction is that one or more halogens are incorporated into molecules of the substance. Halogenation of hydrocarbon gives hydrocarbon derivatives as product where halogen atoms are substituted instead of hydrogen atoms.
Halogenation reaction of alkane is an example of substitution reaction. This is a reaction where a part of reacting molecule replaces an atom or group of atoms in hydrocarbon or hydrocarbon derivative.
General reaction for halogenation of alkane can be given as shown below,
The halogenation reaction takes place giving a mixture of products where the hydrogen atoms present in the alkane are substituted randomly.
Given cycloalkane is cyclopentane. Only one kind of hydrogen is present in cyclopentane. Therefore, chlorinaton of cyclopentane will lead to the same monochlorinated product as shown below,
The structural formula for monochlorinated product of cyclopentane was drawn.
Want to see more full solutions like this?
Chapter 1 Solutions
Organic And Biological Chemistry
- Alcohols are very useful starting materials for the production of many different compounds. The following conversions, starting with 1-butanol, can be carried out in two or more steps. Show the steps (reactants/catalysts) you would follow to carry out the conversions, drawing the formula for the organic product in each step. For each step, a major product must be produced. (See Exercise 62.) (Hint: In the presence of H+, an alcohol is converted into an alkene and water. This is the exact reverse of the reaction of adding water to an alkene to form an alcohol.) a. 1-butanol butane b. 1-butanol 2-butanonearrow_forward1. Which of the following fuel has the lowest heat of combustion?a.Methaneb.Octanec.Coald.Ethanol 2. What is the process of breaking larger hydrocarbon molecules into smaller ones at low temperature through the use of catalyst in order to obtain higher quality of gasoline?a.Thermal crackingb.Catalytic crackingc.Catalytic reformingd.Catalytic combination 3. What is the most common oxidizing agent available in the atmosphere that can be used to generate fire?a.hydrogen peroxideb.oxygenc.ozoned.nitrous oxidearrow_forward1. Using the grignard reaction of alkanes what is the resulting alkane if the reactant is C4H9Br? a. ethane b. propane c. butane d. pentane 2. Using the grignard reaction of alkanes what is the resulting alkane if the reactant is C5H11F? a. ethane b. propane c. butane d. pentane 3. Using Cl2 in C2H4Cl2 will result in HCl and ______. a. C2H3Cl3 b. C2H4Cl3 c. C2H2Cl3 d. not posiblearrow_forward
- 4. Which of the following has isomeric forms?a. C2H3Clb. C2H5Clc. C2HCld. C2H4Cl2 5. Which of the following hydrocarbons always gives the same product when one of its hydrogen atoms is replaced by a chlorine atom.a. Hexaneb. Hex-1-enec. Cyclohexaned. Cyclohexenearrow_forward1. What is the alkane product from the reaction of C7H13COONa and NaOH? a. pentane b. hexane c. butane d. heptane 2. What is the resulting alkane if we have C5H11F and a C5H11F as reactants in Wurtz synthesis? a. hexane b. octane c. nonane d. decane 3.What is the resulting alkane if we have 2C2H5Cl as reactants in Wurtz Synthesis reaction? a. ethane b. butane c. hexane d. octanearrow_forward1. Name and draw the isomers form from the given molecular formula. a. C₂H16 b. C4H,Br₂ 2. Draw the structure of each of the following cycloalkanes a. 1-Bromo-2-methylcyclobutane b. 1,2-Dibromo-3-methylcyclohexanearrow_forward
- Po MODULE-4-ALKANES.pdf O File | C:/Users/user/Documents/BSE%20SCIENCE%202/SECOND%20SEMESTER/MIDTERM/ORGANIC%20CHEMISTRY/MODULE-4-ALKANES.pdf + ... M Gmail Maps A Classes O Meet O GENETICS / SUPPLE.. + D Page view A Read aloud O Add text V Draw 9 Highlight O Erase 16 of 17 4. Name the following compounds by IUPAC system. a. CH3(CH3)2C2Hs b. CH3(CH2)2 CH3 c. (CH3)2CHCH(C3H;) d. CH3(CH2)CH(CAH9)CH(CH3)2 е. С -с-с с -С -с-с-с-с-с-с-с-с -с-с || I | С-с с с-с-с C-C с с C C С —с 9:56 PM P Type here to search N 27°C Haze A O 4)) 5/5/2022arrow_forward1. Which of the following formulas is incorrect?a. CaNO3b. MgSc. AlBr3d. Li2Oe. NaOH 2. Part of an organic molecule where most of its chemical reactions occur.a. Substrateb. Productc. Reactantsd. Functional Group 3. An acyclic unsaturated hydrocarbon that contains one or more carbon-carbon triple bonds. As the family name alkyne indicates the characteristics ending associated with a triple bond. It has a general formula of one triple bond is CnH2n-2.a. Alkenesb. Alkynesc. Aromatic compoundd. Cycloalkanearrow_forwardWhich among the following compounds has the most electronegative carbon in structure? a. benzaldehyde b. benzene c. cyclobutane d. butyne The radical substitution reaction is primarily observed in the following reactions. Which reaction is it? a. Oxidation of but-2-ene b. Boiling of hex-3-ene c. Chlorination of butane d. Combustion of methane Which among the following statements is FALSE about alkanes and cycloalkanes? a. all alkanes produce CO2 and water vapor upon complete combustion b. alkanes undergo substitution reactions c. the empirical formula of all alkanes is CnH2n+2 d. cyclic alkanes exhibit bond strain in the sp#-sp# sigma bondsarrow_forward
- Which of the following can exhibit geometric isomerism? a. 1-propene b. 1,2,2-tribromoethene c. 2,3-dimethyl-2-butene d. 1-bromo-1-propenearrow_forwardWhich of the following is an alkane? a. 2-propene b. Pentane c. 2-pentanol d. Ethanoic acidarrow_forward1. Identify the SYSTEMATIC name of the aliphatic hydrocarbon a. 1-pentenyicyclopentane b. 1-cyclopentylpent-2-yne c. 1-pentenecyclopent-2-yne d. 1-pentenyicyclopentane 2. Identify the SYSTEMATIC name of the aliphatic hydrocarbon a. Trans-1,2-propylcyclopropane b. Trans-1,2-diisopropylcyclopropane c. Cis-1,2-propylcyclopropane d. Cis-1,2-diisopropylcyclopropane 3. Identify the SYSTEMATIC name of the aliphatic hydrocarbon 3,10-dimethyl-2-decacen-6-yne 3,10-dimethyl-2-dodocen-6-yne 3,10-dimethyl-10-decacen-6-yne d. 3,10-dimethyl-10-dodocen-6-yne a. b. C. 4. Identify which type of isomer the following structures represent HO a. Skeletal Isomer b. E/Z isomer c. Cis/Trans isomer OH OH d. Positional isomer 5. Identify which type of isomer the following structures represent a. Skeletal Isomer Br b. E/Z isomer c Cis/Trans isomer Br d. Positional isomerarrow_forward
- Organic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning