
a.
To find area of faces
a.

Answer to Problem 1.5.4P
Area of face1 is 111.38 in2
Area of face2is 35.81 in2
Area of face3 is 75.27 in2
Explanation of Solution
Given information:
Length=15.3 in
Breadth=7.28 in
Height=4.92 in
Formula used:
Area of rectangle=
Calculation:
Area of face1,
Substituting values,
Area=
Solving,
Area=111.38 in2
Hence, area of face1 is 111.38 in2
Area of face2,
Substituting values,
Area=
Solving,
Area=35.81 in2
Hence, area of face2is 35.81 in2
Area of face3,
Substituting values,
Area=
Solving,
Area=75.27 in2
Hence, area of face3 is 75.27 in2
b.
To find surface area of box
b.

Answer to Problem 1.5.4P
Surface area of box is 444.92 in2
Explanation of Solution
Given information:
Length=15.3 in
Breadth=7.28 in
Height=4.92 in
Formula used:
Surface area of cuboid=
Calculation:
Here, surface area of the box is
2(sum of area of the faces)
Substituting values,
Surface area=
Solving,
Surface area=2(222.46)
Hence, surface area of box is 444.92 in2
c.
To find range of values
c.

Answer to Problem 1.5.4P
Range is 10.38
Explanation of Solution
Given information:
Length=15.3 in
Breadth=7.28 in
Height=4.92 in
Formula used:
Range is,
Calculation:
The maximum length is 15.3 in
The minimum length is 4.92 in
For range, substituting the value,
On solving,
Hence, range is 10.38
d.
To find the surface area
d.

Answer to Problem 1.5.4P
Surface area is 438.2 in2
Explanation of Solution
Given information:
Length=15.1 in
Breadth=7.28 in
Height=4.92 in
Formula used:
Surface area of cuboid=
Calculation:
Substituting values,
Surface area=
Solving,
Surface area=
So,
Surface area=
Hence, surface area is 438.2 in2
e.
To explain a statement.
e.

Answer to Problem 1.5.4P
The explanation is as follows
Explanation of Solution
Given information:
Surface areas of box
Calculation:
Surface area of box is 444.92 in2with no error and surface area is 438.2 in2.
A little error can result too much greater difference in surface area as it deals with squares which can have greater values.
Chapter ISG Solutions
Algebra 1, Homework Practice Workbook (MERRILL ALGEBRA 1)
Additional Math Textbook Solutions
Elementary Statistics: Picturing the World (7th Edition)
Algebra and Trigonometry (6th Edition)
University Calculus: Early Transcendentals (4th Edition)
Elementary Statistics (13th Edition)
Pre-Algebra Student Edition
- The Course Name Real Analysis please Solve questions by Real Analysisarrow_forwardpart 3 of the question is: A power outage occurs 6 min after the ride started. Passengers must wait for their cage to be manually cranked into the lowest position in order to exit the ride. Sine function model: where h is the height of the last passenger above the ground measured in feet and t is the time of operation of the ride in minutes. What is the height of the last passenger at the moment of the power outage? Verify your answer by evaluating the sine function model. Will the last passenger to board the ride need to wait in order to exit the ride? Explain.arrow_forward2. The duration of the ride is 15 min. (a) How many times does the last passenger who boarded the ride make a complete loop on the Ferris wheel? (b) What is the position of that passenger when the ride ends?arrow_forward
- 3. A scientist recorded the movement of a pendulum for 10 s. The scientist began recording when the pendulum was at its resting position. The pendulum then moved right (positive displacement) and left (negative displacement) several times. The pendulum took 4 s to swing to the right and the left and then return to its resting position. The pendulum's furthest distance to either side was 6 in. Graph the function that represents the pendulum's displacement as a function of time. Answer: f(t) (a) Write an equation to represent the displacement of the pendulum as a function of time. (b) Graph the function. 10 9 8 7 6 5 4 3 2 1 0 t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 -1 -5. -6 -7 -8 -9 -10-arrow_forwardA power outage occurs 6 min after the ride started. Passengers must wait for their cage to be manually cranked into the lowest position in order to exit the ride. Sine function model: h = −82.5 cos (3πt) + 97.5 where h is the height of the last passenger above the ground measured in feet and t is the time of operation of the ride in minutes. (a) What is the height of the last passenger at the moment of the power outage? Verify your answer by evaluating the sine function model. (b) Will the last passenger to board the ride need to wait in order to exit the ride? Explain.arrow_forwardThe Colossus Ferris wheel debuted at the 1984 New Orleans World's Fair. The ride is 180 ft tall, and passengers board the ride at an initial height of 15 ft above the ground. The height above ground, h, of a passenger on the ride is a periodic function of time, t. The graph displays the height above ground of the last passenger to board over the course of the 15 min ride. Height of Passenger in Ferris Wheel 180 160 140- €120 Height, h (ft) 100 80 60 40 20 0 ך 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Time of operation, t (min) Sine function model: h = −82.5 cos (3πt) + 97.5 where h is the height of the passenger above the ground measured in feet and t is the time of operation of the ride in minutes. What is the period of the sine function model? Interpret the period you found in the context of the operation of the Ferris wheel. Answer:arrow_forward
- 1. Graph the function f(x)=sin(x) −2¸ Answer: y -2π 一元 1 −1 -2 -3 -4+ 元 2πarrow_forward3. Graph the function f(x) = −(x-2)²+4 Answer: f(x) 6 5 4 3 2+ 1 -6-5 -4-3-2-1 × 1 2 3 4 5 6 -1 -2+ ရာ -3+ -4+ -5 -6arrow_forward2. Graph the function f(x) = cos(2x)+1 Answer: -2π 一元 y 3 2- 1 -1 -2+ ရာ -3- Π 2πarrow_forward
- 2. Graph the function f(x) = |x+1+2 Answer: -6-5-4-3-2-1 f(x) 6 5 4 3 2 1 1 2 3 4 5 6 -1 -2 -3 -4 -5 -6arrow_forward1. The table shows values of a function f(x). What is the average rate of change of f(x) over the interval from x = 5 to x = 9? Show your work. X 4 f(x) LO 5 6 7 8 9 10 -2 8 10 11 14 18arrow_forward• Find a real-world situation that can be represented by a sinusoidal function. You may find something online that represents a sinusoidal graph or you can create a sinusoidal graph yourself with a measuring tape and a rope. • Provide a graph complete with labels and units for the x- and y-axes. • Describe the amplitude, period, and vertical shift in terms of the real-world situation.arrow_forward
- Algebra and Trigonometry (6th Edition)AlgebraISBN:9780134463216Author:Robert F. BlitzerPublisher:PEARSONContemporary Abstract AlgebraAlgebraISBN:9781305657960Author:Joseph GallianPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra And Trigonometry (11th Edition)AlgebraISBN:9780135163078Author:Michael SullivanPublisher:PEARSONIntroduction to Linear Algebra, Fifth EditionAlgebraISBN:9780980232776Author:Gilbert StrangPublisher:Wellesley-Cambridge PressCollege Algebra (Collegiate Math)AlgebraISBN:9780077836344Author:Julie Miller, Donna GerkenPublisher:McGraw-Hill Education





