
(a)
Interpretation: Each element in the following list is to be classified as a cation or anion or element that is chemically nonreactive. The number of electrons the atom will gain or lose is to be written.
Concept Introduction: An atom is electrically neutral because it contains equal amounts of protons and electrons. When an atom or collection of atoms loses or receives electrons, an ion is created.
(a)

Answer to Problem 86A
Lithium is a cation.
There is a loss of one electron during the
Explanation of Solution
A cation, or positively charged ion, is created when an atom loses its valence electrons.
Lithium belongs to group 1A elements. It loses an electron to form a lithium cation
Lithium loses one electron during a chemical reaction in order to form an ion.
(b)
Interpretation: Each element in the following list is to be classified as a cation or anion or element that is chemically nonreactive. The number of electrons the atom will gain or lose is to be written.
Concept Introduction: An atom is electrically neutral because it contains equal amounts of protons and electrons. When an atom or collection of atoms loses or receives electrons, an ion is created.
(b)

Answer to Problem 86A
Sodium is a cation.
There is a loss of one electron during the chemical reaction.
Explanation of Solution
A cation, or positively charged ion, is created when an atom loses its valence electrons.
Sodium belongs to group 1A elements. It loses an electron to form a sodium cation
Sodium loses one electron during a chemical reaction in order to form an ion.
(c)
Interpretation: Each element in the following list is to be classified as a cation or anion or element that is chemically nonreactive. The number of electrons the atom will gain or lose is to be written.
Concept Introduction: An atom is electrically neutral because it contains equal amounts of protons and electrons. When an atom or collection of atoms loses or receives electrons, an ion is created.
(c)

Answer to Problem 86A
Neon is a chemically unreactive element.
Explanation of Solution
A cation, or positively charged ion, is created when an atom loses its valence electrons.
An anion is created when a neutral atom accepts extra negatively charged electrons.
Neon is a noble gas that has an octet configuration. There is neither loss nor gain of electrons.
Due to octet configuration, it is unreactive in a chemical reaction.
(d)
Interpretation: Each element in the following list is to be classified as a cation or anion or element that is chemically nonreactive. The number of electrons the atom will gain or lose is to be written.
Concept Introduction: An atom is electrically neutral because it contains equal amounts of protons and electrons. When an atom or collection of atoms loses or receives electrons, an ion is created.
(d)

Answer to Problem 86A
Chlorine is an anion.
There is a gain of one electron during the chemical reaction.
Explanation of Solution
An anion is created when a neutral atom accepts extra negatively charged electrons.
Chlorine belongs to group 7A elements. It gains an electron to form a chloride anion
Chlorine gains one electron during a chemical reaction in order to form an ion.
(e)
Interpretation: Each element in the following list is to be classified as a cation or anion or element that is chemically nonreactive. The number of electrons the atom will gain or lose is to be written.
Concept Introduction: An atom is electrically neutral because it contains equal amounts of protons and electrons. When an atom or collection of atoms loses or receives electrons, an ion is created.
(e)

Answer to Problem 86A
Magnesium is a cation.
There is a loss of two electrons during the chemical reaction.
Explanation of Solution
A cation, or positively charged ion, is created when an atom loses its valence electrons.
Magnesium belongs to group 2A elements. It loses two electrons to form a magnesium cation
Magnesium loses two electrons during a chemical reaction in order to form an ion.
Chapter 7 Solutions
Chemistry 2012 Student Edition (hard Cover) Grade 11
- Explain what is the maximum absorbance of in which caffeine absorbs?arrow_forwardExplain reasons as to why the amount of caffeine extracted from both a singular extraction (5ml Mountain Dew) and a multiple extraction (2 x 5.0ml Mountain Dew) were severely high when compared to coca-cola?arrow_forwardProtecting Groups and Carbonyls 6) The synthesis generates allethrolone that exhibits high insect toxicity but low mammalian toxicity. They are used in pet shampoo, human lice shampoo, and industrial sprays for insects and mosquitos. Propose detailed mechanistic steps to generate the allethrolone label the different types of reagents (Grignard, acid/base protonation, acid/base deprotonation, reduction, oxidation, witting, aldol condensation, Robinson annulation, etc.) III + VI HS HS H+ CH,CH,Li III I II IV CI + P(Ph)3 V ༼ Hint: no strong base added VI S VII IX HO VIII -MgBr HgCl2,HgO HO. isomerization aqeuous solution H,SO, ༽༽༤༽༽ X MeOH Hint: enhances selectivity for reaction at the S X ☑arrow_forward
- Draw the complete mechanism for the acid-catalyzed hydration of this alkene. esc 田 Explanation Check 1 888 Q A slock Add/Remove step Q F4 F5 F6 A བྲA F7 $ % 5 @ 4 2 3 & 6 87 Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Ce W E R T Y U S D LL G H IK DD 요 F8 F9 F10 F1 * ( 8 9 0 O P J K L Z X C V B N M H He commandarrow_forwardExplanation Check F1 H₂O H₂ Pd 1) MCPBA 2) H3O+ 1) Hg(OAc)2, H₂O 2) NaBH4 OH CI OH OH OH hydration halohydrin formation addition halogenation hydrogenation inhalation hydrogenation hydration ☐ halohydrin formation addition halogenation formation chelation hydrogenation halohydrin formation substitution hydration halogenation addition Ohalohydrin formation subtraction halogenation addition hydrogenation hydration F2 80 F3 σ F4 F5 F6 1 ! 2 # 3 $ 4 % 05 Q W & Å © 2025 McGraw Hill LLC. All Rights Reserved. F7 F8 ( 6 7 8 9 LU E R T Y U A F9arrow_forwardShow the mechanism steps to obtain the lowerenergy intermediate: *see imagearrow_forward
- Soap is made by the previous reaction *see image. The main difference between one soap and another soap isthe length (number of carbons) of the carboxylic acid. However, if a soap irritates your skin, they mostlikely used too much lye.Detergents have the same chemical structure as soaps except for the functional group. Detergentshave sulfate (R-SO4H) and phosphate (R-PO4H2) functional groups. Draw the above carboxylic acidcarbon chain but as the two variants of detergents. *see imagearrow_forwardWhat are the reactions or reagents used? *see imagearrow_forwardWhat are the reactions or reagents used? *see imagearrow_forward
- Provide the mechanism for this transformation: *see imagearrow_forwardAssign all the signals individually (please assign the red, green and blue)arrow_forwardThe two pKa values of oxalic acid are 1.25 and 3.81. Why are they not the same value? Show the protontransfer as part of your explanation. *see imagearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





