Concept explainers
In Chap. 4, we defined the material acceleration, which is the acceleration following a fluid particle,
(a) That are the primary dimensions of the gradient operator
Answers: (a)
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Fluid Mechanics Fundamentals And Applications
- 1.6 An incompressible Newtonian fluid flows in the z-direction in space between two par- allel plates that are separated by a distance 2B as shown in Figure 1.3(a). The length and the width of each plate are L and W, respectively. The velocity distribution under steady conditions is given by JAP|B² Vz = 2µL B a) For the coordinate system shown in Figure 1.3(b), show that the velocity distribution takes the form JAP|B? v, = 2μL Problems 11 - 2B --– €. (a) 2B (b) Figure 1.3. Flow between parallel plates. b) Calculate the volumetric flow rate by using the velocity distributions given above. What is your conclusion? 2|A P|B³W Answer: b) For both cases Q = 3µLarrow_forwardIn a fluid flow, the density of the fluid is constant for incompressible flow Select one: True Falsearrow_forwardFind the correct option of the given question brieflyarrow_forward
- Hi please show all work and explanation. Thank you.arrow_forwardQ3arrow_forwardTwo-dimensional irrotational fluid flow is conveniently described by a complex poten- tial f(z) = u(x, v) + iv(x, y). We label the real part, u(x, y), the velocity potential, and the imaginary part, v(x, y), the stream function. The fluid velocity V is given by V = Vu. If f(z) is analytic: 11.2.11 (a) Show that df/dz= Vx – i Vy. (b) Show that V · V = 0 (no sources or sinks). (c) Show that V x V=0 (irrotational, nonturbulent flow).arrow_forward
- #4 1.11 For a small particle of styrofoam (1 lbm/ft) (spherical, with diameter d = 0.3 mm) falling in standard air at speed V, the drag is given by FD-3mVd, where is the air viscosity. Find the maximum speed starting from rest, and the time it takes to reach 95 percent of this speed. Plot the speed as a function of time. s) Answer: (Vmax=0.0435",t=0.0133 Sarrow_forwardPlz don't use chat gptarrow_forward1. (a) The motion of a floating vessel through the surrounding fluid results in a drag force D which is thought to depend upon the vessel's speed v, its length I, the density p and dynamic viscosity μ of the fluid and the acceleration due to gravity g. Show that:- D = pv²1² (1) (b) In order to predict the drag on a full scale 50m long ship traveling at 7m/s in sea water at 5°C of density 1027.7225 kg/m³ and viscosity 1.62 x 103 Pa.s, a model 3m long is tested in a liquid of density 805 kg/m³. What speed does the model need to be tested at and what is the required viscosity of the liquid?arrow_forward
- X2 = 5x1 + 5x2 - 7x3arrow_forwardAn incompressible fluid of density ρ and viscosity μ flows down a plane inclined at an angle α.Assume constant gravitational acceleration downward, fully-developed flow, constant pressure inthe air outside the fluid, and zero stress exerted by the air on the fluid. i) Starting from the incompressible Navier-Stokes equations, derive the differential equation andboundary conditions that govern the velocity u(y). ii) Solve the equation from the previous part for u(y). iii) Using your solution, calculate the following quantities: The mass flow rate (per unit depth) down the channel. The vorticity vector, ~ξ, and rate-of-strain tensor, epsilon at a point (x, y) in the channel. The shear stress exerted by the fluid on the bottom wall The viscous force in the fluid iv) Consider a control volume consisting of a section of length L of the channel. Demonstratethat the conservation of x momentum holds for this control volume by integrating appropriatequantities over its perimeter and…arrow_forwardQ4: Answer the following 1) If for a flow a stream function exists and satisfies the Laplace equation, then which of the following is the correct statement? (a) The flow is rotational (b) The flow is rotational and incompressible (c) The flow is irrotational and compressible (d)The flow is irrotational and incompressible |2) The boundary layer thickness for flow over a flat plate (a) decreases with an increase in the free stream velocity (b) increases with an increase in the free stream velocity (c) decreases with an increase in the kinematic viscosity 3) In the Fanno flow ,if the flow is supersonic ,a shock appears in the duct when (b) L > Lmax 4) An automotive wing is a device whose intended design is to generate (a) L = Lmax (c) L< Lmax ----------as air passes around it. 5) -- is a unit less value denotes how much an object resists movement through a fluid |6)Fluid accelerate or decelerates at any point in a variable area duct depends on ------ and 7) To decrease drag force it is…arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY