Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 138P
To determine
The correct answer of dependent variable from the given options.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
3- Use dimensional analysis to show that in a problem involving shallow water waves, both the
Froude number and the Reynolds number are relevant dimensionless parameters. The wave
speed c of waves on the surface of a liquid is a function of depth h, gravitational acceleration g.
fluid density p, and fluid viscosity μ. Manipulate your's to get the parameters into the following
form:
Fr=
√=f(Re) where Re=pch
μ
h
Too
8
P₂ μ
When small aerosol particles or microorganisms move through air or water, the Reynolds number is very small (Re << 1). Such flows are called creeping flows. The drag on an object in creeping flow is a function only of its speed V, some characteristic length scale L of the object, and fluid viscosity µ. Use dimensional analysis to generate a relationship for the drag force FD as a function of the independent variables.
Q1: If an air stream flowing at velocity (U) pasta body of length (L) causes a drag force (F) on the body which depends only upon U, L, and fluid viscosity μ. Formulate the suitable dimensionless parameter of the air drag force.
Chapter 7 Solutions
Fluid Mechanics Fundamentals And Applications
Ch. 7 - List the seven primary dimensions. What is...Ch. 7 - What is the difference between a dimension and a...Ch. 7 - Write the primary dimensions of the universal...Ch. 7 - Write the primary dimensions of each of the...Ch. 7 - Prob. 5PCh. 7 - Prob. 6PCh. 7 - On a periodic chart of the elements, molar mass...Ch. 7 - Prob. 8PCh. 7 - Prob. 9PCh. 7 - The moment of force(M)is formed by the cross...
Ch. 7 - Prob. 11PCh. 7 - You are probably familiar with Ohm law for...Ch. 7 - Write the primary dimensions of each of the...Ch. 7 - Prob. 14PCh. 7 - Prob. 15PCh. 7 - Thermal conductivity k is a measure of the ability...Ch. 7 - Write the primary dimensions of each of the...Ch. 7 - Prob. 18PCh. 7 - Prob. 19EPCh. 7 - Explain the law of dimensional homogeneity in...Ch. 7 - In Chap. 4, we defined the material acceleration,...Ch. 7 - Newton's second law is the foundation for the...Ch. 7 - Prob. 23PCh. 7 - Prob. 24PCh. 7 - An important application of fluid mechanics is the...Ch. 7 - Prob. 26PCh. 7 - Prob. 27PCh. 7 - What is the primary reason for nondimensionalizing...Ch. 7 - Prob. 29PCh. 7 - In an oscillating compressible flow field the...Ch. 7 - In Chap. 9, we define the stream function for...Ch. 7 - In an oscillating incompressible flow field the...Ch. 7 - Prob. 33PCh. 7 - Consider ventilation of a well-mixed room as in...Ch. 7 - List the three primary purposes of dimensional...Ch. 7 - List and describe the three necessary conditions...Ch. 7 - A student team is to design a human-powered...Ch. 7 - Repeat Prob. 7-34 with all the same conditions...Ch. 7 - This is a follow-tip to Prob. 7-34. The students...Ch. 7 - A lightweight parachute is being designed for...Ch. 7 - Prob. 41PCh. 7 - The aerodynamic drag of a new sports car is lo be...Ch. 7 - This is a follow-tip to Prob. 7-37E. The...Ch. 7 - Consider the common situation in which a...Ch. 7 - Some students want to visualize flow over a...Ch. 7 - Prob. 46PCh. 7 - Prob. 47PCh. 7 - Prob. 48PCh. 7 - Prob. 49PCh. 7 - Prob. 50PCh. 7 - A stirrer is used to mix chemicals in a large tank...Ch. 7 - Prob. 52PCh. 7 - Albert Einstein is pondering how to write his...Ch. 7 - The Richardson number is defined as Ri=L5gV2...Ch. 7 - Consider filly developed Couette flow-flow between...Ch. 7 - Consider developing Couette flow-the same flow as...Ch. 7 - The speed of sound c in an ideal gas is known to...Ch. 7 - Repeat Prob. 7-54, except let the speed of sound c...Ch. 7 - Repeat Prob. 7-54, except let the speed of sound c...Ch. 7 - Prob. 60PCh. 7 - When small aerosol particles or microorganisms...Ch. 7 - Prob. 62PCh. 7 - Prob. 63PCh. 7 - Prob. 64PCh. 7 - An incompressible fluid of density and viscosity ...Ch. 7 - Prob. 66PCh. 7 - One of the first things you learn in physics class...Ch. 7 - Prob. 68PCh. 7 - Bill is working on an electrical circuit problem....Ch. 7 - A boundary layer is a thin region (usually along a...Ch. 7 - A liquid of density and viscosity is pumped at...Ch. 7 - A propeller of diameter D rotates at angular...Ch. 7 - Repeat Prob. 7-68 for the case an which the...Ch. 7 - In the study of turbulent flow, turbulent viscous...Ch. 7 - Prob. 75PCh. 7 - Consider a liquid in a cylindrical container in...Ch. 7 - Prob. 77PCh. 7 - Prob. 78CPCh. 7 - Prob. 79CPCh. 7 - Prob. 80CPCh. 7 - Define wind tunnel blockage. What is the rule of...Ch. 7 - Prob. 82CPCh. 7 - In the model truck example discussed in Section...Ch. 7 - A small wind tunnel in a university's...Ch. 7 - Prob. 87PCh. 7 - There are many established nondimensional...Ch. 7 - Prob. 89CPCh. 7 - For each statement, choose whether the statement...Ch. 7 - Prob. 91PCh. 7 - Prob. 92PCh. 7 - Prob. 93PCh. 7 - The Archimedes number listed in Table 7-5 is...Ch. 7 - Prob. 95PCh. 7 - Prob. 96PCh. 7 - Prob. 98PCh. 7 - Prob. 99PCh. 7 - Repeal Prob. 7-100 except for a different...Ch. 7 - Prob. 101PCh. 7 - Prob. 102PCh. 7 - Au aerosol particle of characteristic size DPmoves...Ch. 7 - Prob. 104PCh. 7 - Prob. 105PCh. 7 - Prob. 106PCh. 7 - Prob. 107PCh. 7 - Prob. 108PCh. 7 - Prob. 109PCh. 7 - Prob. 110PCh. 7 - An electrostatic precipitator (ESP) is a device...Ch. 7 - Prob. 113PCh. 7 - Repeat pall (a) of Prob. 7-110, except instead of...Ch. 7 - Sound intensity I is defined as the acoustic power...Ch. 7 - Repeal Prob. 7-112, but with the distance r from...Ch. 7 - Engineers at MIT have developed a mechanical model...Ch. 7 - Prob. 118PCh. 7 - Prob. 119PCh. 7 - Prob. 120PCh. 7 - Prob. 121PCh. 7 - The primary dimensions of kinematic viscosity are...Ch. 7 - Prob. 123PCh. 7 - Prob. 124PCh. 7 - Prob. 125PCh. 7 - There at four additive terms in an equation, and...Ch. 7 - Prob. 127PCh. 7 - Prob. 128PCh. 7 - Prob. 129PCh. 7 - Which similarity condition is related to...Ch. 7 - A one-third scale model of a car is to be tested...Ch. 7 - A one-fourth scale model of a car is to be tested...Ch. 7 - A one-third scale model of an airplane is to be...Ch. 7 - Prob. 134PCh. 7 - Prob. 135PCh. 7 - Prob. 136PCh. 7 - Consider a boundary layer growing along a thin...Ch. 7 - Prob. 138P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q4: Use dimensional analysis to show that in a problem involving shallow water waves (Figure 1), both the Froude number (Fr = and the Reynolds number (Re pch. are relevant dimensionless parameters Fr = f (Re). The wave speed c of %3D waves on the surface of a liquid is a function of depth h, gravitational acceleration g, fluid density p, and fluid viscosity u. P. u Figure 1arrow_forwardThe Stokes number, St, used in particle-dynamics studies is a dimensionless combination of 5 variables: acceleration of gravity g, viscosity μ, density p, particle velocity U, and particle diameter D. If St is propotional to μ and inversely proportional to g, find its dimensionless form.arrow_forwardUse image below Solve carefully QUESTION DOWN BELOWarrow_forward
- The resistance R, to the motion of a completely submerged body depends upon the length of the body L, velocity of flow V, mass density of fluid p and kinematic viscosity of fluid v. By dimensional analysis prove that R = pr* L') VL' = pV?1arrow_forward1. The thrust of a marine propeller Fr depends on water density p, propeller diameter D, speed of advance through the water V, acceleration due to gravity g, the angular speed of the propeller w, the water pressure p, and the water viscosity μ. You want to find a set of dimensionless variables on which the thrust coefficient depends. In other words CT = FT · = ƒen(#1, #2, ...) pV2D2 (a) What is k? Explain. (b) Find the 's on the right-hand-side of equation 1 if one of them HAS to be a Froude number gD/V², (1)arrow_forwardThe differential equation for small-amplitude vibrations y(r, f) of a simple beam is given by a*y + E = 0 ax pA where p = beam material density A = cross-sectional area I= area moment of inertia E = Young's modulus Use only the quantities p, E, and A to nondimensionalize y, x, and t, and rewrite the differential equation in dimensionless form. Do any parameters remain? Could they be removed by further manipulation of the variables?arrow_forward
- Consider a boundary layer growing along a thin flat plate. The boundary layer thickness & at a downstream distance x is a function of x, the fluid density p, dynamic viscosity, and free stream velocity V. Use Buckingham's theorem with p, x and V as repeating variables, to obtain the relationship between dimensionless parameters Is. Figure 3.2arrow_forward3- Consider laminar flow over a flat plate. The boundary layer thickness & grows with distance x down the plate and is also a function of free-stream velocity U, fluid viscosity u, and fluid density p. Find the dimensionless parameters for this problem, being sure to rearrange if necessary to agree with the standard dimensionless groups in fluid mechanics.arrow_forwardFluid Mechanics Problem: Assume all fluids are 20oC.arrow_forward
- I need help correcting this problem (incorrect attempts are attached). Please step-by-step.arrow_forwardPide Use Buckingham's PI Theorem to determine non-dimensional parameters in the phenomenon shown on the right (surface tension of a soap bubble). The variables involved are: R AP - pressure difference between the inside and outside R- radius of the bubble Pide Soap film surface tension (Gravity is not relevant since the soap bubble is neutrally buoyant in air)arrow_forwardA2) In order to solve the dimensional analysis problem involving shallow water waves as in Figure 2, Buckingham Pi Theorem has been used. h Figure 2 Through the observation that has been done, the wave speed © of waves on the surface of a liquid is a function of the depth (h), gravitational acceleration (g), fluid density (p), and fluid viscosity (µ). By using this Buckingham Pi Theorem: a) Analyze the above problem and show that the Froude Number (Fr) and Reynolds Number (Re) are the relevant dimensionless parameters involve in this problem. b) Manipulate your Pi (1) products to get the parameter into the following form: pch := f(Re) where Re = Fr = c) If one additional primary variable parameter involve in this proolem such as, temperature (T). Discuss on the Pi (m) products that can be produce and explain why this dimensional analysis is very important in the experimental work.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Unit Conversion the Easy Way (Dimensional Analysis); Author: ketzbook;https://www.youtube.com/watch?v=HRe1mire4Gc;License: Standard YouTube License, CC-BY