Consider ventilation of a well-mixed room as in Fig. P7-21. The differential equation for mass concentration in the room as a function of time is given in Prob. 7-21 and is repeated here for convenience,
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Fluid Mechanics Fundamentals And Applications
- In the study of turbulent flow, turbulent viscous dissipation rate ? (rate of energy loss per unit mass) is known to be a function of length scale l and velocity scale u′ of the large-scale turbulent eddies. Using dimensional analysis (Buckingham pi and the method of repeating variables) and showing all of your work, generate an expression for ? as a function of l and u′.arrow_forward7-67 A liquid of density p and viscosity u is pumped at volume flow rate b through a pump of diameter D. The blades of the pump rotate at angular velocity w. The pump supplies a pressure rise AP to the liquid. Using dimensional analysis, generate a dimensionless relationship for AP as a function of the other parameters in the problem. Identify any established nondimensional parameters that appear in your result. Hint: For consistency (and whenever possible), it is wise to choose a length, a density, and a velocity (or angular velocity) as repeating variables.arrow_forwardA stirrer is used to mix chemicals in a large tank. The shaft power W . supplied to the stirrer blades is a function of stirrer diameter D, liquid density ? ,liquidviscosity ? , and the angular velocity ? of the spinning blades.Use the method of repeating variables to generate a dimensionless relationship between these parameters. Show all your work and be sure to identify your Π groups, modifying them as necessary.arrow_forward
- i need the answer quicklyarrow_forwardThe heat flux for stable film boiling on the outside of a horizontal cylinder or sphere of diameter D, in m, is given below. What should be the value of "n", for the equation above to be dimensionally consistent? Use dimensional analysis: q=heat flux, W m² W k = thermal conductivity of vapor, 'm °C hgf - [g kỷ Pv(P₁ − Pv)[hfg + 0.4 Cpv (Ts − Tsat)]] à = Cf MyD (Ts - Tsat) Pv = density of vapor, P₁ = density of liquid,- kg m³ kg 'm³ Cpv = enthalpy of vaporization, kg g = gravitatioinal acceleration, C = experimental constant, dimensionless m J kg °C Ts = surface temperature of the heater, °C Tsat = saturation temperature of vapor, °C kg Hv = viscosity of vapor, ms = specific hear of vapor, (Ts - Tsat)arrow_forwardI need answer within 20 minutes please please with my best wishesarrow_forward
- Ship whose full length is 100 m is to travel at 10 m/sec. For dynamical similarity, with what velocity should a 1:25 model of the ship be towed?arrow_forwardFluid mechanicsarrow_forwardThe spin rate of a tennis ball determines the aerodynamic forces acting on it. In turn, the spin rate is a§ectedby the aerodynamic torque. If the torque depends on áight speed V , density , viscosity , ball diameter D,angular velocity !, and the fuzz height, hf , Önd the important dimensionless variables for this case. Use V ,, and D as your scaling (repeating) variables.arrow_forward
- please urgent I want to briefly summarize what he is talking about and what you conclude about the two graph (ventilation system)arrow_forwardHi please show calculations or diagrams if required thank youarrow_forwardIn making a dimensional analysis, what rules do you followfor choosing your scaling variables?arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning