Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 110P
To determine
The primary dimensions of both sides of the equation and verify that whether the equation is dimensionally homogeneous.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
If the following equation is dimensionally homogeneous, find the dimensions of the
physical quantity K indicated in the system of fundamental physical quantities:
Length, Mass and Time.
Ep -G
Mm
K
where Ep is the gravitational potential energy (same units as the kinetic energy
E mv²/2), M and m are the mass of the earth and the mass of the body, respectively,
and G is the universal gravitation constant
G~ 6,67 x 10-11
N m²
kg²
Can you please answer this
Pide
Use Buckingham's PI Theorem to determine non-dimensional
parameters in the phenomenon shown on the right (surface tension of
a soap bubble). The variables involved are:
R
AP - pressure difference between the inside and outside
R- radius of the bubble
Pide
Soap
film
surface tension
(Gravity is not relevant since the soap bubble is neutrally buoyant in air)
Chapter 7 Solutions
Fluid Mechanics Fundamentals And Applications
Ch. 7 - List the seven primary dimensions. What is...Ch. 7 - What is the difference between a dimension and a...Ch. 7 - Write the primary dimensions of the universal...Ch. 7 - Write the primary dimensions of each of the...Ch. 7 - Prob. 5PCh. 7 - Prob. 6PCh. 7 - On a periodic chart of the elements, molar mass...Ch. 7 - Prob. 8PCh. 7 - Prob. 9PCh. 7 - The moment of force(M)is formed by the cross...
Ch. 7 - Prob. 11PCh. 7 - You are probably familiar with Ohm law for...Ch. 7 - Write the primary dimensions of each of the...Ch. 7 - Prob. 14PCh. 7 - Prob. 15PCh. 7 - Thermal conductivity k is a measure of the ability...Ch. 7 - Write the primary dimensions of each of the...Ch. 7 - Prob. 18PCh. 7 - Prob. 19EPCh. 7 - Explain the law of dimensional homogeneity in...Ch. 7 - In Chap. 4, we defined the material acceleration,...Ch. 7 - Newton's second law is the foundation for the...Ch. 7 - Prob. 23PCh. 7 - Prob. 24PCh. 7 - An important application of fluid mechanics is the...Ch. 7 - Prob. 26PCh. 7 - Prob. 27PCh. 7 - What is the primary reason for nondimensionalizing...Ch. 7 - Prob. 29PCh. 7 - In an oscillating compressible flow field the...Ch. 7 - In Chap. 9, we define the stream function for...Ch. 7 - In an oscillating incompressible flow field the...Ch. 7 - Prob. 33PCh. 7 - Consider ventilation of a well-mixed room as in...Ch. 7 - List the three primary purposes of dimensional...Ch. 7 - List and describe the three necessary conditions...Ch. 7 - A student team is to design a human-powered...Ch. 7 - Repeat Prob. 7-34 with all the same conditions...Ch. 7 - This is a follow-tip to Prob. 7-34. The students...Ch. 7 - A lightweight parachute is being designed for...Ch. 7 - Prob. 41PCh. 7 - The aerodynamic drag of a new sports car is lo be...Ch. 7 - This is a follow-tip to Prob. 7-37E. The...Ch. 7 - Consider the common situation in which a...Ch. 7 - Some students want to visualize flow over a...Ch. 7 - Prob. 46PCh. 7 - Prob. 47PCh. 7 - Prob. 48PCh. 7 - Prob. 49PCh. 7 - Prob. 50PCh. 7 - A stirrer is used to mix chemicals in a large tank...Ch. 7 - Prob. 52PCh. 7 - Albert Einstein is pondering how to write his...Ch. 7 - The Richardson number is defined as Ri=L5gV2...Ch. 7 - Consider filly developed Couette flow-flow between...Ch. 7 - Consider developing Couette flow-the same flow as...Ch. 7 - The speed of sound c in an ideal gas is known to...Ch. 7 - Repeat Prob. 7-54, except let the speed of sound c...Ch. 7 - Repeat Prob. 7-54, except let the speed of sound c...Ch. 7 - Prob. 60PCh. 7 - When small aerosol particles or microorganisms...Ch. 7 - Prob. 62PCh. 7 - Prob. 63PCh. 7 - Prob. 64PCh. 7 - An incompressible fluid of density and viscosity ...Ch. 7 - Prob. 66PCh. 7 - One of the first things you learn in physics class...Ch. 7 - Prob. 68PCh. 7 - Bill is working on an electrical circuit problem....Ch. 7 - A boundary layer is a thin region (usually along a...Ch. 7 - A liquid of density and viscosity is pumped at...Ch. 7 - A propeller of diameter D rotates at angular...Ch. 7 - Repeat Prob. 7-68 for the case an which the...Ch. 7 - In the study of turbulent flow, turbulent viscous...Ch. 7 - Prob. 75PCh. 7 - Consider a liquid in a cylindrical container in...Ch. 7 - Prob. 77PCh. 7 - Prob. 78CPCh. 7 - Prob. 79CPCh. 7 - Prob. 80CPCh. 7 - Define wind tunnel blockage. What is the rule of...Ch. 7 - Prob. 82CPCh. 7 - In the model truck example discussed in Section...Ch. 7 - A small wind tunnel in a university's...Ch. 7 - Prob. 87PCh. 7 - There are many established nondimensional...Ch. 7 - Prob. 89CPCh. 7 - For each statement, choose whether the statement...Ch. 7 - Prob. 91PCh. 7 - Prob. 92PCh. 7 - Prob. 93PCh. 7 - The Archimedes number listed in Table 7-5 is...Ch. 7 - Prob. 95PCh. 7 - Prob. 96PCh. 7 - Prob. 98PCh. 7 - Prob. 99PCh. 7 - Repeal Prob. 7-100 except for a different...Ch. 7 - Prob. 101PCh. 7 - Prob. 102PCh. 7 - Au aerosol particle of characteristic size DPmoves...Ch. 7 - Prob. 104PCh. 7 - Prob. 105PCh. 7 - Prob. 106PCh. 7 - Prob. 107PCh. 7 - Prob. 108PCh. 7 - Prob. 109PCh. 7 - Prob. 110PCh. 7 - An electrostatic precipitator (ESP) is a device...Ch. 7 - Prob. 113PCh. 7 - Repeat pall (a) of Prob. 7-110, except instead of...Ch. 7 - Sound intensity I is defined as the acoustic power...Ch. 7 - Repeal Prob. 7-112, but with the distance r from...Ch. 7 - Engineers at MIT have developed a mechanical model...Ch. 7 - Prob. 118PCh. 7 - Prob. 119PCh. 7 - Prob. 120PCh. 7 - Prob. 121PCh. 7 - The primary dimensions of kinematic viscosity are...Ch. 7 - Prob. 123PCh. 7 - Prob. 124PCh. 7 - Prob. 125PCh. 7 - There at four additive terms in an equation, and...Ch. 7 - Prob. 127PCh. 7 - Prob. 128PCh. 7 - Prob. 129PCh. 7 - Which similarity condition is related to...Ch. 7 - A one-third scale model of a car is to be tested...Ch. 7 - A one-fourth scale model of a car is to be tested...Ch. 7 - A one-third scale model of an airplane is to be...Ch. 7 - Prob. 134PCh. 7 - Prob. 135PCh. 7 - Prob. 136PCh. 7 - Consider a boundary layer growing along a thin...Ch. 7 - Prob. 138P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A differential equation is d2ydt2=Ay2+Byt where y represents a distance and t is time. Determine the dimensions of constants A and B for which the equation will be dimensionally homogeneous.arrow_forwardWrite the primary dimensions of each of the following variables from the field of solid mechanics, showing all your work: (a) moment of inertia I; (b) modulus of elasticity E, also called Young’s modulus; (c) strain ? ; (d) stress ?. (e) Finally, show that the relationship between stress and strain (Hooke’s law) is a dimensionally homogeneous equation.arrow_forwardvolumetric strain rate as the rate of increase of volume of a fluid element per unit volume. In Cartesian coordinates we write the volumetric strain rate as 1/ V DV/Dt = ∂u/∂x + ∂?/∂y + ∂w/∂zWrite the primary dimensions of each additive term, and verify that the equation is dimensionally homogeneous. Show all your work.arrow_forward
- Please answer this question using methods of repeating variables/ dimensional analysis. Thank youarrow_forward2. Dimensional analysis can be used in problems other than fluid mechanics ones. The important variables affecting the period of a vibrating beam (usually designated as T and with dimensions of time) are the beam length, area moment of inertia I, modulus of elasticity E, material density p, and Poisson's ratio σ, so that T= fcn(l, I, E, p, σ) Recall that the modulus of elasticity has typical units of N/m² and Poisson's ratio is dimensionless. (a) Find a dimensionless version of the functional relationship. (b) If E and I must always appear together (meaning that EI is effectively a single variable), find a dimen- sionless version of the functional relationship.arrow_forwardWrite the primary dimensions of each of the following variables from the field of thermodynamics, showing all your work: (a) energy E; (b) specific energy e = E/m; (c) power W . .arrow_forward
- Suppose we know little about the strength of materials butare told that the bending stress σ in a beam is proportionalto the beam half-thickness y and also depends on thebending moment M and the beam area moment of inertiaI . We also learn that, for the particular case M = 2900in ∙ lbf, y = 1.5 in, and I = 0.4 in4 , the predicted stressis 75 MPa. Using this information and dimensional reasoningonly, find, to three significant figures, the onlypossible dimensionally homogeneous formula σ=y f ( M , I ).arrow_forwardHi, Please help me with this question and show the full solution,. Thank you very mucharrow_forwardWhen a liquid in a beaker is stired, whirlpool will form and there will be an elevation difference h, between the center of the liquid surface and the rim of the liquid surface. Apply the method of repeating variables to generate a dimensional relationship for elevation difference (h), angular velocity (@) of the whirlpool, fluid density (p). gravitational acceleration (2), and radius (R) of the container. Take o. pand R as the repeating variables.arrow_forward
- Thermal conductivity k is a measure of the ability of a material to conduct heat. For conduction heat transfer in the x-direction through a surface normal to the x-direction, Fourier’s law of heat conduction is expressed as: Q=-kA.dT/dx where ?̇ is the rate of heat transfer and A is the area normal to the direction of heat transfer. Determine the primary dimensions of thermal conductivity (k). Look up a value of k and verify that its SI units are consistent with your result. Write a set of primary SI units for k.arrow_forwardPlease solve the sub parts A,B,C with the step.. The all part same the chapter thank u A. Investigate with dimensional analysis, is this equation true t = [ 2x / a ]1/2 B. Express 0.00034 m in microns C. Express 8.31 x 1014 seconds in pico secondsarrow_forwardHW-1-.docx -> Q1/ complete the dimensional formula and SI units for table. US Physical Quantity SI. No Dimensional Formula S.I Unit customary unit Area (A) work (w) 3 Density (d) 4 Speed (s) stress (6) Acceleration (a) Q2/ Suppose we are told that the acceleration a of a particle moving with uniform speed v in a circle of radius r is proportional to some power of r, say r", and some power of v, say vm , also some power of mass, say m". Determine the values of n and m and o Q3/ Show that the expression (x, = x +v, t+ % a t) is dimensionally correct, where X, and x, are the position and a is the acceleration, and t is the time, v is the velocity.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE LPrinciples of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Unit Conversion the Easy Way (Dimensional Analysis); Author: ketzbook;https://www.youtube.com/watch?v=HRe1mire4Gc;License: Standard YouTube License, CC-BY