Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7, Problem 74P
In the study of turbulent flow, turbulent viscous dissipation rate
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In the study of turbulent flow, turbulent viscous dissipation rate ? (rate of energy loss per unit mass) is known to be a function of length scale l and velocity scale u′ of the large-scale turbulent eddies. Using dimensional analysis (Buckingham pi and the method of repeating variables) and showing all of your work, generate an expression for ? as a function of l and u′.
When a steady uniform stream flows over a circular cylinder,
vortices are shed at a periodic rate. These are referred to as
Kármán vortices. The frequency of vortex shedding få is defined
by the free-stream speed V, fluid density p, fluid viscosity u, and
cylinder diameter D. Use the Buckingham Pi method to show a
dimensionless relationship for Kármán vortex shedding
frequency is St = f (Re). Show all your work.
V
D
I want handwritten don't copy from chegg same to same change it even if u copy and handwritten only
Chapter 7 Solutions
Fluid Mechanics Fundamentals And Applications
Ch. 7 - List the seven primary dimensions. What is...Ch. 7 - What is the difference between a dimension and a...Ch. 7 - Write the primary dimensions of the universal...Ch. 7 - Write the primary dimensions of each of the...Ch. 7 - Prob. 5PCh. 7 - Prob. 6PCh. 7 - On a periodic chart of the elements, molar mass...Ch. 7 - Prob. 8PCh. 7 - Prob. 9PCh. 7 - The moment of force(M)is formed by the cross...
Ch. 7 - Prob. 11PCh. 7 - You are probably familiar with Ohm law for...Ch. 7 - Write the primary dimensions of each of the...Ch. 7 - Prob. 14PCh. 7 - Prob. 15PCh. 7 - Thermal conductivity k is a measure of the ability...Ch. 7 - Write the primary dimensions of each of the...Ch. 7 - Prob. 18PCh. 7 - Prob. 19EPCh. 7 - Explain the law of dimensional homogeneity in...Ch. 7 - In Chap. 4, we defined the material acceleration,...Ch. 7 - Newton's second law is the foundation for the...Ch. 7 - Prob. 23PCh. 7 - Prob. 24PCh. 7 - An important application of fluid mechanics is the...Ch. 7 - Prob. 26PCh. 7 - Prob. 27PCh. 7 - What is the primary reason for nondimensionalizing...Ch. 7 - Prob. 29PCh. 7 - In an oscillating compressible flow field the...Ch. 7 - In Chap. 9, we define the stream function for...Ch. 7 - In an oscillating incompressible flow field the...Ch. 7 - Prob. 33PCh. 7 - Consider ventilation of a well-mixed room as in...Ch. 7 - List the three primary purposes of dimensional...Ch. 7 - List and describe the three necessary conditions...Ch. 7 - A student team is to design a human-powered...Ch. 7 - Repeat Prob. 7-34 with all the same conditions...Ch. 7 - This is a follow-tip to Prob. 7-34. The students...Ch. 7 - A lightweight parachute is being designed for...Ch. 7 - Prob. 41PCh. 7 - The aerodynamic drag of a new sports car is lo be...Ch. 7 - This is a follow-tip to Prob. 7-37E. The...Ch. 7 - Consider the common situation in which a...Ch. 7 - Some students want to visualize flow over a...Ch. 7 - Prob. 46PCh. 7 - Prob. 47PCh. 7 - Prob. 48PCh. 7 - Prob. 49PCh. 7 - Prob. 50PCh. 7 - A stirrer is used to mix chemicals in a large tank...Ch. 7 - Prob. 52PCh. 7 - Albert Einstein is pondering how to write his...Ch. 7 - The Richardson number is defined as Ri=L5gV2...Ch. 7 - Consider filly developed Couette flow-flow between...Ch. 7 - Consider developing Couette flow-the same flow as...Ch. 7 - The speed of sound c in an ideal gas is known to...Ch. 7 - Repeat Prob. 7-54, except let the speed of sound c...Ch. 7 - Repeat Prob. 7-54, except let the speed of sound c...Ch. 7 - Prob. 60PCh. 7 - When small aerosol particles or microorganisms...Ch. 7 - Prob. 62PCh. 7 - Prob. 63PCh. 7 - Prob. 64PCh. 7 - An incompressible fluid of density and viscosity ...Ch. 7 - Prob. 66PCh. 7 - One of the first things you learn in physics class...Ch. 7 - Prob. 68PCh. 7 - Bill is working on an electrical circuit problem....Ch. 7 - A boundary layer is a thin region (usually along a...Ch. 7 - A liquid of density and viscosity is pumped at...Ch. 7 - A propeller of diameter D rotates at angular...Ch. 7 - Repeat Prob. 7-68 for the case an which the...Ch. 7 - In the study of turbulent flow, turbulent viscous...Ch. 7 - Prob. 75PCh. 7 - Consider a liquid in a cylindrical container in...Ch. 7 - Prob. 77PCh. 7 - Prob. 78CPCh. 7 - Prob. 79CPCh. 7 - Prob. 80CPCh. 7 - Define wind tunnel blockage. What is the rule of...Ch. 7 - Prob. 82CPCh. 7 - In the model truck example discussed in Section...Ch. 7 - A small wind tunnel in a university's...Ch. 7 - Prob. 87PCh. 7 - There are many established nondimensional...Ch. 7 - Prob. 89CPCh. 7 - For each statement, choose whether the statement...Ch. 7 - Prob. 91PCh. 7 - Prob. 92PCh. 7 - Prob. 93PCh. 7 - The Archimedes number listed in Table 7-5 is...Ch. 7 - Prob. 95PCh. 7 - Prob. 96PCh. 7 - Prob. 98PCh. 7 - Prob. 99PCh. 7 - Repeal Prob. 7-100 except for a different...Ch. 7 - Prob. 101PCh. 7 - Prob. 102PCh. 7 - Au aerosol particle of characteristic size DPmoves...Ch. 7 - Prob. 104PCh. 7 - Prob. 105PCh. 7 - Prob. 106PCh. 7 - Prob. 107PCh. 7 - Prob. 108PCh. 7 - Prob. 109PCh. 7 - Prob. 110PCh. 7 - An electrostatic precipitator (ESP) is a device...Ch. 7 - Prob. 113PCh. 7 - Repeat pall (a) of Prob. 7-110, except instead of...Ch. 7 - Sound intensity I is defined as the acoustic power...Ch. 7 - Repeal Prob. 7-112, but with the distance r from...Ch. 7 - Engineers at MIT have developed a mechanical model...Ch. 7 - Prob. 118PCh. 7 - Prob. 119PCh. 7 - Prob. 120PCh. 7 - Prob. 121PCh. 7 - The primary dimensions of kinematic viscosity are...Ch. 7 - Prob. 123PCh. 7 - Prob. 124PCh. 7 - Prob. 125PCh. 7 - There at four additive terms in an equation, and...Ch. 7 - Prob. 127PCh. 7 - Prob. 128PCh. 7 - Prob. 129PCh. 7 - Which similarity condition is related to...Ch. 7 - A one-third scale model of a car is to be tested...Ch. 7 - A one-fourth scale model of a car is to be tested...Ch. 7 - A one-third scale model of an airplane is to be...Ch. 7 - Prob. 134PCh. 7 - Prob. 135PCh. 7 - Prob. 136PCh. 7 - Consider a boundary layer growing along a thin...Ch. 7 - Prob. 138P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 5.13 The torque due to the frictional resistance of the oil film between a rotating shaft and its bearing is found to be dependent on the force F normal to the shaft, the speed of rotation N of the shaft, the dynamic viscosity of the oil, and the shaft diameter D. Establish a correlation among these variables by using dimensional analysis.arrow_forwardA stirrer is used to mix chemicals in a tank let tank diameter Dtank and average liquid depth htank. The shaft power W . supplied to the stirrer blades is a function of stirrer diameter D, liquid density ? ,liquidviscosity ? , and the angular velocity ? of the spinning blades.Use the method of repeating variables to generate a dimensionless relationship between these parameters. Show all your work and be sure to identify your Π groups, modifying them as necessary.arrow_forwardDuring World War II, Sir Geoffrey Taylor, a British fluid dynamicist, used dimensional analysis to estimate theenergy released by an atomic bomb explosion. He assumed that the energy released E, was a function of blastwave radius R, air density ρ, and time t. Arrange these variables into single dimensionless group, which we mayterm the blast wave number.arrow_forward
- A boundary layer is a thin region (usually along a wall) in which viscous forces are significant and within which the flow is rotational. Consider a boundary layer growing along a thin flat plate. The flow is steady. The boundary layer thickness ? at any downstream distance x is a function of x, free-stream velocity V∞, and fluid properties ? (density) and ? (viscosity). Use the method of repeating variables to generate a dimensionless relationship for ? as a function of the other parameters. Show all your work.arrow_forwardThe spin rate of a tennis ball determines the aerodynamic forces acting on it. In turn, the spin rate is a§ectedby the aerodynamic torque. If the torque depends on áight speed V , density , viscosity , ball diameter D,angular velocity !, and the fuzz height, hf , Önd the important dimensionless variables for this case. Use V ,, and D as your scaling (repeating) variables.arrow_forwardHow do you get from equation 3.1.1 to 3.1.5? I understand that yoy mutiply both sides by Ui, but I'm confused on the math that is done to bring Ui into the partial derivative. Please show all intermediate steps.arrow_forward
- Evaluate the use of dimensionless analysis using the Buckingham Pi Theorem for a given fluid flow system (D4) , where resistance tomotion ‘R’ for a sphere of diameter ‘D’ moving at constant velocity on the surface of a liquid is due to the density ‘ρ’ and the surfacewaves produced by the acceleration of gravity ‘g’. The dimensionless quantity linking these quantities is Ne= Function (Fr). To do thisyou must apply dimensional analysis to fluid flow system given in Figure 1 (P11). PICTURE IS ALSO ATTACHEDarrow_forwardTaylor number (Ta) is used here to describe the ratio between the inertia effect and the viscous effect. By applying Buckingham Pi's Theorem, determine an equation for Ta as a function of the radius of inner cylinder (r), cylinder tangential velocity (v), fluid dynamic viscosity (u), gap distance (L) and fluid density (p). Q4arrow_forwardThe wall shear stress Twin a boundary layer is assumed to be a function of stream velocity U, boundary layer thickness , local turbulence velocity u', density p, and local pressure gradient dp/dx. Using (p, U, and ) as repeating variables, rewrite this relationship as a dimensionless function.arrow_forward
- Force F is applied at the tip of a cantilever beam of length L and moment of inertia I Fig. . The modulus of elasticity of the beam material is E. When the force is applied, the tip deflection of the beam is z d.Use dimensional analysis to generate a relationship for zd as a function of the independent variables. Name any established dimensionless parameters that appear in your analysisarrow_forwardMLT By dimensional analysis, obtain an expression for the drag force (F) on a partially submerged body moving with a relative velocity (u) in a fluid; the other variables being the linear dimension (L), surface roughness (e), fluid density (p), and gravitational acceleration (g).arrow_forwardUsing II-Theorem method to Express (n) in terms of dimensionless groups.The efficiency (n) of a fan depends upon density (p), and dynamic viscosity (u), of the fluid, angular velocity (@), diameter of the rotator (D), and discharge (Q). Q3/ A petroleum crude oil having a kinematics viscosity 0.0001 m?/s is flowing through the piping arrangement shown in the below Figure,The total mass flow rate is equal 10 kg/s entering in pipe (A) . The flow divides to three pipes ( B, C, D). The steel pipes are schedule 40 pipe. note that the dynamic viscosity 0.088 kg/m.s. Calculate the following using SI units: 1- The type of flow in pipe (A). 2- The mass velocity in pipe (B) GB. 3- The velocity in pipe (D) Up. 4- The Volumetric flow rate in pipe (D) QD. 5- The Volumetric flow rate in pipe (C) Qc. Og = 2o mm Ug = 2UA Perolenm crude oIL A ma = 1o Kg/s O = 5o mm mic = ? Go = 7000 k9/m.s Nate that!- O, = 30 mm. D:0iameter. U:velocity G mass velocity mimass How vatearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Unit Conversion the Easy Way (Dimensional Analysis); Author: ketzbook;https://www.youtube.com/watch?v=HRe1mire4Gc;License: Standard YouTube License, CC-BY