Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7, Problem 36CP
List and describe the three necessary conditions for complete similarity between a model and a prototype.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
List and describe the three necessary conditions for complete similarity between a model and a prototype.
Please show working out aND explain the bukingham theorem
Ship whose full length is 100 m is to travel at 10 m/sec. For dynamical similarity, with what velocity should a 1:25 model of the ship be towed?
Chapter 7 Solutions
Fluid Mechanics Fundamentals And Applications
Ch. 7 - List the seven primary dimensions. What is...Ch. 7 - What is the difference between a dimension and a...Ch. 7 - Write the primary dimensions of the universal...Ch. 7 - Write the primary dimensions of each of the...Ch. 7 - Prob. 5PCh. 7 - Prob. 6PCh. 7 - On a periodic chart of the elements, molar mass...Ch. 7 - Prob. 8PCh. 7 - Prob. 9PCh. 7 - The moment of force(M)is formed by the cross...
Ch. 7 - Prob. 11PCh. 7 - You are probably familiar with Ohm law for...Ch. 7 - Write the primary dimensions of each of the...Ch. 7 - Prob. 14PCh. 7 - Prob. 15PCh. 7 - Thermal conductivity k is a measure of the ability...Ch. 7 - Write the primary dimensions of each of the...Ch. 7 - Prob. 18PCh. 7 - Prob. 19EPCh. 7 - Explain the law of dimensional homogeneity in...Ch. 7 - In Chap. 4, we defined the material acceleration,...Ch. 7 - Newton's second law is the foundation for the...Ch. 7 - Prob. 23PCh. 7 - Prob. 24PCh. 7 - An important application of fluid mechanics is the...Ch. 7 - Prob. 26PCh. 7 - Prob. 27PCh. 7 - What is the primary reason for nondimensionalizing...Ch. 7 - Prob. 29PCh. 7 - In an oscillating compressible flow field the...Ch. 7 - In Chap. 9, we define the stream function for...Ch. 7 - In an oscillating incompressible flow field the...Ch. 7 - Prob. 33PCh. 7 - Consider ventilation of a well-mixed room as in...Ch. 7 - List the three primary purposes of dimensional...Ch. 7 - List and describe the three necessary conditions...Ch. 7 - A student team is to design a human-powered...Ch. 7 - Repeat Prob. 7-34 with all the same conditions...Ch. 7 - This is a follow-tip to Prob. 7-34. The students...Ch. 7 - A lightweight parachute is being designed for...Ch. 7 - Prob. 41PCh. 7 - The aerodynamic drag of a new sports car is lo be...Ch. 7 - This is a follow-tip to Prob. 7-37E. The...Ch. 7 - Consider the common situation in which a...Ch. 7 - Some students want to visualize flow over a...Ch. 7 - Prob. 46PCh. 7 - Prob. 47PCh. 7 - Prob. 48PCh. 7 - Prob. 49PCh. 7 - Prob. 50PCh. 7 - A stirrer is used to mix chemicals in a large tank...Ch. 7 - Prob. 52PCh. 7 - Albert Einstein is pondering how to write his...Ch. 7 - The Richardson number is defined as Ri=L5gV2...Ch. 7 - Consider filly developed Couette flow-flow between...Ch. 7 - Consider developing Couette flow-the same flow as...Ch. 7 - The speed of sound c in an ideal gas is known to...Ch. 7 - Repeat Prob. 7-54, except let the speed of sound c...Ch. 7 - Repeat Prob. 7-54, except let the speed of sound c...Ch. 7 - Prob. 60PCh. 7 - When small aerosol particles or microorganisms...Ch. 7 - Prob. 62PCh. 7 - Prob. 63PCh. 7 - Prob. 64PCh. 7 - An incompressible fluid of density and viscosity ...Ch. 7 - Prob. 66PCh. 7 - One of the first things you learn in physics class...Ch. 7 - Prob. 68PCh. 7 - Bill is working on an electrical circuit problem....Ch. 7 - A boundary layer is a thin region (usually along a...Ch. 7 - A liquid of density and viscosity is pumped at...Ch. 7 - A propeller of diameter D rotates at angular...Ch. 7 - Repeat Prob. 7-68 for the case an which the...Ch. 7 - In the study of turbulent flow, turbulent viscous...Ch. 7 - Prob. 75PCh. 7 - Consider a liquid in a cylindrical container in...Ch. 7 - Prob. 77PCh. 7 - Prob. 78CPCh. 7 - Prob. 79CPCh. 7 - Prob. 80CPCh. 7 - Define wind tunnel blockage. What is the rule of...Ch. 7 - Prob. 82CPCh. 7 - In the model truck example discussed in Section...Ch. 7 - A small wind tunnel in a university's...Ch. 7 - Prob. 87PCh. 7 - There are many established nondimensional...Ch. 7 - Prob. 89CPCh. 7 - For each statement, choose whether the statement...Ch. 7 - Prob. 91PCh. 7 - Prob. 92PCh. 7 - Prob. 93PCh. 7 - The Archimedes number listed in Table 7-5 is...Ch. 7 - Prob. 95PCh. 7 - Prob. 96PCh. 7 - Prob. 98PCh. 7 - Prob. 99PCh. 7 - Repeal Prob. 7-100 except for a different...Ch. 7 - Prob. 101PCh. 7 - Prob. 102PCh. 7 - Au aerosol particle of characteristic size DPmoves...Ch. 7 - Prob. 104PCh. 7 - Prob. 105PCh. 7 - Prob. 106PCh. 7 - Prob. 107PCh. 7 - Prob. 108PCh. 7 - Prob. 109PCh. 7 - Prob. 110PCh. 7 - An electrostatic precipitator (ESP) is a device...Ch. 7 - Prob. 113PCh. 7 - Repeat pall (a) of Prob. 7-110, except instead of...Ch. 7 - Sound intensity I is defined as the acoustic power...Ch. 7 - Repeal Prob. 7-112, but with the distance r from...Ch. 7 - Engineers at MIT have developed a mechanical model...Ch. 7 - Prob. 118PCh. 7 - Prob. 119PCh. 7 - Prob. 120PCh. 7 - Prob. 121PCh. 7 - The primary dimensions of kinematic viscosity are...Ch. 7 - Prob. 123PCh. 7 - Prob. 124PCh. 7 - Prob. 125PCh. 7 - There at four additive terms in an equation, and...Ch. 7 - Prob. 127PCh. 7 - Prob. 128PCh. 7 - Prob. 129PCh. 7 - Which similarity condition is related to...Ch. 7 - A one-third scale model of a car is to be tested...Ch. 7 - A one-fourth scale model of a car is to be tested...Ch. 7 - A one-third scale model of an airplane is to be...Ch. 7 - Prob. 134PCh. 7 - Prob. 135PCh. 7 - Prob. 136PCh. 7 - Consider a boundary layer growing along a thin...Ch. 7 - Prob. 138P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Here, a 1:10 scale prototype of a propeller on a ship is to be tested in a water channel. What would the rotating speed of the model be if the rotational speed of the p propeller is 2000 rpm, and if: (a) the Froude number governs the model-prototype similarity(b) Reynolds number governs the similarityarrow_forwardA one-fourth scale model of a car is to be tested in a wind tunnel. The conditions of the actual car are V = 45 km/h and T = 0°C and the air temperature in the wind tunnel is 20°C. In order to achieve similarity between the model and the prototype, the wind tunnel is run at 180 km/h. The properties of air at 1 atm and 0°C: ? = 1.292 kg/m3, ? = 1.338 × 10−5 m2/s. The properties of air at 1 atm and 20°C: ? = 1.204 kg/m3, ? = 1.516 × 10−5 m2/s. If the average drag force on the model is measured to be 70 N, the drag force on the prototype is (a) 66.5 N (b) 70 N (c) 75.1 N (d ) 80.6 N (e) 90 Narrow_forwardKindly solve with full solution and explain. Thank you very mucharrow_forward
- Give Justification for performing a geometrically scaled model rather than the full-scale prototype in the technique of dimensional analysis and similarity.arrow_forwardOil (kinematic viscosity, v = 1.0 x 10-5 m³/s) flows through a pipe of 0.5 m diameter with a velocity of 10 m/s. Water (kinematic viscosity, V = 0.89 x 10-6 m²/s) is flowing through a model pipe of diameter 20 mm. For satisfying the dynamic similarity, the velocity of water (in m/s) is %3D Warrow_forwardSpeed is usually a function of density, gravitational acceleration, diameter, height difference, viscosity, and length. Using the repetitive variables method and taking density, gravitational acceleration, and diameter as repetitive variables, find the required dimensionless parameters. V = f(p, g, D, Az, u, L)arrow_forward
- 1:25 scale model of a submarine is tested at 180 ft/s in a wind tunnel using sea-level standard air. What is the prototype speed in seawater at 20°C for dynamic similarity? If the model drag is 1.6lb, what is the prototype drag?arrow_forwardFluid mechanics Iarrow_forwardFluid mechanics Iarrow_forward
- The viscous torque T produced on a disc rotating in a liquid depends upon the characteristic dimension D, the rotational speed N, the density pand the dynamic viscosity u. a) Show that there are two non-dimensional parameters written as: T and a, PND? b) In order to predict the torque on a disc of 0.5 m of diameter which rotates in oil at 200 rpm, a model is made to a scale of 1/5. The model is rotated in water. Calculate the speed of rotation of the model necessary to simulate the rotation of the real disc. c) When the model is tested at 18.75 rpm, the torque was 0.02 N.m. Predict the torque on the full size disc at 200 rpm. Notes: For the oil: the density is 750kg/m² and the dynamic viscosity is 0.2 N.s/m². For water: the density is 1000 kg/ m² and the dynamic viscosity is 0.001 N.s/m². kg.m IN =1arrow_forwardA 1:30 model of a ship is made. The real ship has a hull length of 130 m and travels at 7.9 m/s. Find the fraude number. If there is a dynamic similarity and froude # criterion applies, what should the velocity of the mdoel ship be?arrow_forwardThe drag force of a new sports car is to be predicted at a speed of 70 mi/h at an air temperature of 25 C. Automotive engineers build a 0.2 scale model of the car to test in a wind tunnel. The temperature of the wind tunnel air is also 25 C. Determine how fast (in mi/h) the engineers should run the wind tunnel to achieve similarity between the model and the prototype.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license