Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 134P
To determine
The drag force on the prototype among the given options.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A one-fourth scale model of an airplane is to be tested in water. The airplane has a velocity of 700 km/h in air at −50°C. The water temperature in the test section is 10°C. In order to achieve similarity between the model and the prototype, the test is done at a water velocity of 393 km/h. The properties of air at 1 atm and −50°C: ? = 1.582 kg/m3, ? = 1.474 × 10−5 kg/m·s. The properties of water at 1 atm and 10°C: ? = 999.7 kg/m3, ? = 1.307 × 10−3 kg/m·s. If the average drag force on the model is measured to be 13,800 N, the drag force on the prototype is (a) 590 N (b) 862 N (c) 1109 N (d ) 4655 N (e) 3450 N
Pravinbhai
The drag force on a submarine, which is moving on the surface, is to be determined by a test on
a model which is scaled down to one-twentieth of the prototype. The test is to be carried in a
towing tank, where the model submarine is moved along a channel of liquid. The density and the
kinematic viscosity of the seawater are 1010 kg/m³ and 1.3x10-6 m 2/s, respectively. The speed
of the prototype is 2.6 m/s. Assume that F = f(V, L. g. p.), using pi-theorem and similarity
principle to:
a) Determine the speed at which the model should be moved in the towing tank.
b) Determine the kinematic viscosity of the liquid that should be used in the towing tank.
Chapter 7 Solutions
Fluid Mechanics Fundamentals And Applications
Ch. 7 - List the seven primary dimensions. What is...Ch. 7 - What is the difference between a dimension and a...Ch. 7 - Write the primary dimensions of the universal...Ch. 7 - Write the primary dimensions of each of the...Ch. 7 - Prob. 5PCh. 7 - Prob. 6PCh. 7 - On a periodic chart of the elements, molar mass...Ch. 7 - Prob. 8PCh. 7 - Prob. 9PCh. 7 - The moment of force(M)is formed by the cross...
Ch. 7 - Prob. 11PCh. 7 - You are probably familiar with Ohm law for...Ch. 7 - Write the primary dimensions of each of the...Ch. 7 - Prob. 14PCh. 7 - Prob. 15PCh. 7 - Thermal conductivity k is a measure of the ability...Ch. 7 - Write the primary dimensions of each of the...Ch. 7 - Prob. 18PCh. 7 - Prob. 19EPCh. 7 - Explain the law of dimensional homogeneity in...Ch. 7 - In Chap. 4, we defined the material acceleration,...Ch. 7 - Newton's second law is the foundation for the...Ch. 7 - Prob. 23PCh. 7 - Prob. 24PCh. 7 - An important application of fluid mechanics is the...Ch. 7 - Prob. 26PCh. 7 - Prob. 27PCh. 7 - What is the primary reason for nondimensionalizing...Ch. 7 - Prob. 29PCh. 7 - In an oscillating compressible flow field the...Ch. 7 - In Chap. 9, we define the stream function for...Ch. 7 - In an oscillating incompressible flow field the...Ch. 7 - Prob. 33PCh. 7 - Consider ventilation of a well-mixed room as in...Ch. 7 - List the three primary purposes of dimensional...Ch. 7 - List and describe the three necessary conditions...Ch. 7 - A student team is to design a human-powered...Ch. 7 - Repeat Prob. 7-34 with all the same conditions...Ch. 7 - This is a follow-tip to Prob. 7-34. The students...Ch. 7 - A lightweight parachute is being designed for...Ch. 7 - Prob. 41PCh. 7 - The aerodynamic drag of a new sports car is lo be...Ch. 7 - This is a follow-tip to Prob. 7-37E. The...Ch. 7 - Consider the common situation in which a...Ch. 7 - Some students want to visualize flow over a...Ch. 7 - Prob. 46PCh. 7 - Prob. 47PCh. 7 - Prob. 48PCh. 7 - Prob. 49PCh. 7 - Prob. 50PCh. 7 - A stirrer is used to mix chemicals in a large tank...Ch. 7 - Prob. 52PCh. 7 - Albert Einstein is pondering how to write his...Ch. 7 - The Richardson number is defined as Ri=L5gV2...Ch. 7 - Consider filly developed Couette flow-flow between...Ch. 7 - Consider developing Couette flow-the same flow as...Ch. 7 - The speed of sound c in an ideal gas is known to...Ch. 7 - Repeat Prob. 7-54, except let the speed of sound c...Ch. 7 - Repeat Prob. 7-54, except let the speed of sound c...Ch. 7 - Prob. 60PCh. 7 - When small aerosol particles or microorganisms...Ch. 7 - Prob. 62PCh. 7 - Prob. 63PCh. 7 - Prob. 64PCh. 7 - An incompressible fluid of density and viscosity ...Ch. 7 - Prob. 66PCh. 7 - One of the first things you learn in physics class...Ch. 7 - Prob. 68PCh. 7 - Bill is working on an electrical circuit problem....Ch. 7 - A boundary layer is a thin region (usually along a...Ch. 7 - A liquid of density and viscosity is pumped at...Ch. 7 - A propeller of diameter D rotates at angular...Ch. 7 - Repeat Prob. 7-68 for the case an which the...Ch. 7 - In the study of turbulent flow, turbulent viscous...Ch. 7 - Prob. 75PCh. 7 - Consider a liquid in a cylindrical container in...Ch. 7 - Prob. 77PCh. 7 - Prob. 78CPCh. 7 - Prob. 79CPCh. 7 - Prob. 80CPCh. 7 - Define wind tunnel blockage. What is the rule of...Ch. 7 - Prob. 82CPCh. 7 - In the model truck example discussed in Section...Ch. 7 - A small wind tunnel in a university's...Ch. 7 - Prob. 87PCh. 7 - There are many established nondimensional...Ch. 7 - Prob. 89CPCh. 7 - For each statement, choose whether the statement...Ch. 7 - Prob. 91PCh. 7 - Prob. 92PCh. 7 - Prob. 93PCh. 7 - The Archimedes number listed in Table 7-5 is...Ch. 7 - Prob. 95PCh. 7 - Prob. 96PCh. 7 - Prob. 98PCh. 7 - Prob. 99PCh. 7 - Repeal Prob. 7-100 except for a different...Ch. 7 - Prob. 101PCh. 7 - Prob. 102PCh. 7 - Au aerosol particle of characteristic size DPmoves...Ch. 7 - Prob. 104PCh. 7 - Prob. 105PCh. 7 - Prob. 106PCh. 7 - Prob. 107PCh. 7 - Prob. 108PCh. 7 - Prob. 109PCh. 7 - Prob. 110PCh. 7 - An electrostatic precipitator (ESP) is a device...Ch. 7 - Prob. 113PCh. 7 - Repeat pall (a) of Prob. 7-110, except instead of...Ch. 7 - Sound intensity I is defined as the acoustic power...Ch. 7 - Repeal Prob. 7-112, but with the distance r from...Ch. 7 - Engineers at MIT have developed a mechanical model...Ch. 7 - Prob. 118PCh. 7 - Prob. 119PCh. 7 - Prob. 120PCh. 7 - Prob. 121PCh. 7 - The primary dimensions of kinematic viscosity are...Ch. 7 - Prob. 123PCh. 7 - Prob. 124PCh. 7 - Prob. 125PCh. 7 - There at four additive terms in an equation, and...Ch. 7 - Prob. 127PCh. 7 - Prob. 128PCh. 7 - Prob. 129PCh. 7 - Which similarity condition is related to...Ch. 7 - A one-third scale model of a car is to be tested...Ch. 7 - A one-fourth scale model of a car is to be tested...Ch. 7 - A one-third scale model of an airplane is to be...Ch. 7 - Prob. 134PCh. 7 - Prob. 135PCh. 7 - Prob. 136PCh. 7 - Consider a boundary layer growing along a thin...Ch. 7 - Prob. 138P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- When a sphere falls freely through a homogeneous fluid, it reaches a terminal velocity at which the weight of the sphere is balanced by the buoyant force and the frictional resistance of the fluid. Make a dimensional analysis of this problem and indicate how experimental data for this problem could be correlated. Neglect compressibility effects and the influence of surface roughness.arrow_forwardA 1:7 scale model simulates the operation of a large turbine that is to generate200 kW with a flow rate of 1.5 m3/s. What flow rate should be used in the model, andwhat power output is expected?(a) Water at the same temperature is used in both model and prototype.(b) The model water is at 25°C and the prototype water is at 10°C.arrow_forwardAn engineer is to design a human powered submarine for a design competition. The overall length of the prototype submarine is 2.24 m and its engineer designers hope that it can travel fully submerged through water at 0.560 m/s. The water is freshwater (a lake) at 7-15°C (p=999.1 kg/m3 and u= 1.138 ×103 kg/m-st. The design team builds a one-eighth scale model to test in their university's wind tunnel. The air in the wind tunnel is at 25°C (p= 1.180 kg/m3 and u = 1.849 ×10-5 kg/m-s) and at one standard atmosphere pressure. At what air speed do they need to run the wind tunnel in order to achieve similarity?arrow_forward
- A ship 350 m long moves in sea water whose density is 1030 kg/m3 . A 1:120 model of this ship is to be tested in a wind tunnel. The velocity of the wind tunnel around the model is 35 m/s and the resistance of the model is 65 N. Determine the velocity and also the resistance of the ship in sea water. The density of air is given as 1.24 kg/m3 . Take the kinematic viscosity of air and sea water as 0.012 stokes and 0.018 stokes respectively.arrow_forwardA ship 350 m long moves in sea water whose density is 1030 kg/m3 . A 1:120 model of this ship is to be tested in a wind tunnel. The velocity of the wind tunnel around the model is 35 m/s and the resistance of the model is 65 N. Determine the velocity and also the resistance of the ship in sea water. The density of air is given as 1.24 kg/m3 . Take the kinematic viscosity of air and sea water as 0.012 stokes and 0.018 stokes respectively.arrow_forwardThe aerodynamic drag of a new sports car is to be predicted at a speed of 60.0 mi/h at an air temperature of 25°C. Automotive engineers build a one-third scale model of the car to test in a wind tunnel. The temperature of the wind tunnel air is also 25°C. The drag force is measured with a drag balance, and the moving belt is used to simulate the moving ground (from the car’s frame of reference). Determine how fast the engineers should run the wind tunnel to achieve similarity between the model and the prototype.arrow_forward
- The aerodynamic drag of a new sports car is to be predicted at a speed of 60.0 mi/h at an air temperature of 25°C. Automotive engineers build a one-third scale model of the car to test in a wind tunnel. The temperature of the wind tunnel air is also 25°C. The drag force is measured with a drag balance, and the moving belt is used to simulate the moving ground (from the car’s frame of reference). Determine how fast the engineers should run the wind tunnel to achieve similarity between the model and the prototype.arrow_forwardWe want to predict the drag force on a remote-control airplane as it flies through air having a density of 1.21 kg/m³ and a viscosity of 1.76x10- Pa-s. The airplane's fuselage has a diameter of 200 mm and the airplane will fly through air at a speed of 32 m/s. A model of the airplane's fuselage will be tested in a pressurized wind tunnel. The diameter of the model is 75 mm and the density and viscosity of the air in the wind tunnel are 3.00 kg/m³ and 1.82× 10-5 Pa-s, respectively. a) The diameter of the airplane's fuselage will be used to define the Reynolds number Re, for the flow around the fuselage. Compute the Reynolds number for the flow around the airplane's fuselage (answer: Re, = 4.40x 10'). b) Find the speed of the air that should be used to test a model of the fuselage in the wind tunnel to correctly model dynamic conditions (answer: 35.6 m/s). c) The model is tested in the wind tunnel at four speeds that bracket the speed computed above. The measured drag forces on the…arrow_forwardDimensional analysis concept applied herearrow_forward
- A 1:30 scale model of a cavitating overflow structure is to be tested in a vacuum tank wherein the pressure is maintained at 140 kPa. The prototype liquid is water at 20°C. The barometric pressure on the prototype is 100 kPa. If the liquid to be used in the model has an absolute vapor pressure of 10.0 kPa, what values of density, viscosity, and surface tension must it have for complete dynamic similarity between model and prototype?arrow_forwardHi please show calculations or diagrams if required thank youarrow_forwardWind tunnel test section km/h Model FD Moving belt Drag balance The aerodynamic drag of a new Volvo FH truck is to be predicted at a speed of 85 km/h at an air temperature of 25°C (p=1.184 kg/m³, u=1.849x10-5kg/m-s). Volvo engineers build a 1/2 scale model of the FH to test in a wind tunnel. The temperature of the wind tunnel is also 25°C. The drag force is measured with a drag balance, and the moving belt is used to simulate the moving ground. Determine how fast the engineers should run the wind tunnel to achieve similarity between the model and the prototype.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License