Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 24P
To determine
The primary dimensions of each additive term in the given equation.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
3. The stress tensor of a fluid in motion is given by
-P T1 T2
-P 0
T = T1
T2
0 -P]
where P, ti and t2 are known.
(a) Find an expression to calculate the force exerted by the fluid on surfaces with surface area A
that are perpendicular to the unit vectors
(a.1) n = ei
√2
√2
(a.2) n = ²е₁ + ¹²е₂
(b) What are the normal stresses acting on the two surfaces specified above?
In mechanical fluid
For the flow of a viscous fluid, with the velocity V = f(x)g(y)h(z)i (where f, g, h are arbitrary functions), the following conditions are given:
. The flow is adiabatic.
• The quantities v = 2 and 3 = $ are constants.
• The velocity circulation is conserved for the flow, irrespective of the values of vand 3.
What is the general solution for the functions f, g, h?
Chapter 7 Solutions
Fluid Mechanics Fundamentals And Applications
Ch. 7 - List the seven primary dimensions. What is...Ch. 7 - What is the difference between a dimension and a...Ch. 7 - Write the primary dimensions of the universal...Ch. 7 - Write the primary dimensions of each of the...Ch. 7 - Prob. 5PCh. 7 - Prob. 6PCh. 7 - On a periodic chart of the elements, molar mass...Ch. 7 - Prob. 8PCh. 7 - Prob. 9PCh. 7 - The moment of force(M)is formed by the cross...
Ch. 7 - Prob. 11PCh. 7 - You are probably familiar with Ohm law for...Ch. 7 - Write the primary dimensions of each of the...Ch. 7 - Prob. 14PCh. 7 - Prob. 15PCh. 7 - Thermal conductivity k is a measure of the ability...Ch. 7 - Write the primary dimensions of each of the...Ch. 7 - Prob. 18PCh. 7 - Prob. 19EPCh. 7 - Explain the law of dimensional homogeneity in...Ch. 7 - In Chap. 4, we defined the material acceleration,...Ch. 7 - Newton's second law is the foundation for the...Ch. 7 - Prob. 23PCh. 7 - Prob. 24PCh. 7 - An important application of fluid mechanics is the...Ch. 7 - Prob. 26PCh. 7 - Prob. 27PCh. 7 - What is the primary reason for nondimensionalizing...Ch. 7 - Prob. 29PCh. 7 - In an oscillating compressible flow field the...Ch. 7 - In Chap. 9, we define the stream function for...Ch. 7 - In an oscillating incompressible flow field the...Ch. 7 - Prob. 33PCh. 7 - Consider ventilation of a well-mixed room as in...Ch. 7 - List the three primary purposes of dimensional...Ch. 7 - List and describe the three necessary conditions...Ch. 7 - A student team is to design a human-powered...Ch. 7 - Repeat Prob. 7-34 with all the same conditions...Ch. 7 - This is a follow-tip to Prob. 7-34. The students...Ch. 7 - A lightweight parachute is being designed for...Ch. 7 - Prob. 41PCh. 7 - The aerodynamic drag of a new sports car is lo be...Ch. 7 - This is a follow-tip to Prob. 7-37E. The...Ch. 7 - Consider the common situation in which a...Ch. 7 - Some students want to visualize flow over a...Ch. 7 - Prob. 46PCh. 7 - Prob. 47PCh. 7 - Prob. 48PCh. 7 - Prob. 49PCh. 7 - Prob. 50PCh. 7 - A stirrer is used to mix chemicals in a large tank...Ch. 7 - Prob. 52PCh. 7 - Albert Einstein is pondering how to write his...Ch. 7 - The Richardson number is defined as Ri=L5gV2...Ch. 7 - Consider filly developed Couette flow-flow between...Ch. 7 - Consider developing Couette flow-the same flow as...Ch. 7 - The speed of sound c in an ideal gas is known to...Ch. 7 - Repeat Prob. 7-54, except let the speed of sound c...Ch. 7 - Repeat Prob. 7-54, except let the speed of sound c...Ch. 7 - Prob. 60PCh. 7 - When small aerosol particles or microorganisms...Ch. 7 - Prob. 62PCh. 7 - Prob. 63PCh. 7 - Prob. 64PCh. 7 - An incompressible fluid of density and viscosity ...Ch. 7 - Prob. 66PCh. 7 - One of the first things you learn in physics class...Ch. 7 - Prob. 68PCh. 7 - Bill is working on an electrical circuit problem....Ch. 7 - A boundary layer is a thin region (usually along a...Ch. 7 - A liquid of density and viscosity is pumped at...Ch. 7 - A propeller of diameter D rotates at angular...Ch. 7 - Repeat Prob. 7-68 for the case an which the...Ch. 7 - In the study of turbulent flow, turbulent viscous...Ch. 7 - Prob. 75PCh. 7 - Consider a liquid in a cylindrical container in...Ch. 7 - Prob. 77PCh. 7 - Prob. 78CPCh. 7 - Prob. 79CPCh. 7 - Prob. 80CPCh. 7 - Define wind tunnel blockage. What is the rule of...Ch. 7 - Prob. 82CPCh. 7 - In the model truck example discussed in Section...Ch. 7 - A small wind tunnel in a university's...Ch. 7 - Prob. 87PCh. 7 - There are many established nondimensional...Ch. 7 - Prob. 89CPCh. 7 - For each statement, choose whether the statement...Ch. 7 - Prob. 91PCh. 7 - Prob. 92PCh. 7 - Prob. 93PCh. 7 - The Archimedes number listed in Table 7-5 is...Ch. 7 - Prob. 95PCh. 7 - Prob. 96PCh. 7 - Prob. 98PCh. 7 - Prob. 99PCh. 7 - Repeal Prob. 7-100 except for a different...Ch. 7 - Prob. 101PCh. 7 - Prob. 102PCh. 7 - Au aerosol particle of characteristic size DPmoves...Ch. 7 - Prob. 104PCh. 7 - Prob. 105PCh. 7 - Prob. 106PCh. 7 - Prob. 107PCh. 7 - Prob. 108PCh. 7 - Prob. 109PCh. 7 - Prob. 110PCh. 7 - An electrostatic precipitator (ESP) is a device...Ch. 7 - Prob. 113PCh. 7 - Repeat pall (a) of Prob. 7-110, except instead of...Ch. 7 - Sound intensity I is defined as the acoustic power...Ch. 7 - Repeal Prob. 7-112, but with the distance r from...Ch. 7 - Engineers at MIT have developed a mechanical model...Ch. 7 - Prob. 118PCh. 7 - Prob. 119PCh. 7 - Prob. 120PCh. 7 - Prob. 121PCh. 7 - The primary dimensions of kinematic viscosity are...Ch. 7 - Prob. 123PCh. 7 - Prob. 124PCh. 7 - Prob. 125PCh. 7 - There at four additive terms in an equation, and...Ch. 7 - Prob. 127PCh. 7 - Prob. 128PCh. 7 - Prob. 129PCh. 7 - Which similarity condition is related to...Ch. 7 - A one-third scale model of a car is to be tested...Ch. 7 - A one-fourth scale model of a car is to be tested...Ch. 7 - A one-third scale model of an airplane is to be...Ch. 7 - Prob. 134PCh. 7 - Prob. 135PCh. 7 - Prob. 136PCh. 7 - Consider a boundary layer growing along a thin...Ch. 7 - Prob. 138P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- In mechanical fluidarrow_forwardLet's say that the semiempirical binding energy formula is Eb= aA-bA^2/3 - s(N-Z)^2/A -dZ^2/A^1/3 where a,b,s,d are constants. Imagine that you are in a different universe where there are 3 types of nucleons with spin equal to 1/2 and electric charges equal to +1, -1 and 0. Mass similar to that of a proton. Forces are similar to those of our universe. i) How do equations change for A and Z as a function of N+, N-, No and what is the semiempirical equation for the binding energy as a function of A, Z, and No? ii) At what Z and No do we have the maximum and minimum binding energy for every A? iii) When do we have stable nuclei under beta (β) decay? If "alpha particle" in this situation has N+ = N- = No = 2, what does apply for alpha (α) decay? iv) What does apply for nuclear fission and finally, how would life be in this situation?arrow_forwardP4.41 As mentioned in P4.41, is the velocity profile for laminar flow between two plates, as in Fig. u = 4umaxy(hy) h² v=w=0 If the wall temperature is Tw at both walls, use the incompressible-flow energy equation (4.75) to solve for the temperature distribution T(y) between the walls for steady flow. y = h y = 0 y \u{y) T(y) Twarrow_forward
- d²u dy² pg where g is the acceleration due to gravity Harrow_forwardConsider the system presented in the figure x1(t) x2(1) 1 N/m 0000 At) 1 kg 1 N-s/m 1 kg Frictionless The matrix form *+2++1 -(+2) X, (6))(F) X,(s) -(s +2) s +s+1X,(s), F(s) a.arrow_forwardFluid Mechanics a thin plate is separated from two fixed plates by very viscous liquids μ1 =0.10 pa.S and μ2 = 0.5 Pa.s respectively. the spacings between the center nplate and fixed plate are also hi = 16 cm and h2 = 11 cm, while the contact area between the center plate and each fluid is A= 340 cm^2. Assuming a linear velocity distribution in each fluid, determine the force F(in newton) required to pull the plate at velocity V=3.5 m/s.arrow_forward
- Mechanical EngineeringFluid Mechanicsarrow_forwardAn incompressible liquid flows along a pipe as shown. The constriction in the pipe reduces its diameter from 4.0 cm to 2.0 cm. Aj A2 Where the pipe is wide, the water velocity, v1 = 8.0 m/s. The velocity of the water, V2, at the narrow end is nearly 2.0 m/s 16 m/s 4.0 m/s 32 m/sarrow_forwardConsider the mechanical energy equation: P + VB? + gzB =PA + V? + g ZA + w – loss A +g ZA + W – loss where loss 2 0 Select ALL true statements below. a fluid particle will flow through point A before point B a fluid particle will flow through point B before point A points A and B do not lie on the same streamline if a turbine is present, w < 0 if a pump is present, w < 0 if the fluid is perfectly inviscid, loss can be 0arrow_forward
- Consider the mechanical energy equation: PE *+ Vg? + g ZB = + V? + gZA + W - loss + VA? +g ZA + W – loss where loss 20 Select ALL true statements below. a fluid particle will flow through point A before point B a fluid particle will flow through point B before point A points A and B do not lie on the same streamline if a turbine is present, w < 0 if a pump is present, w < 0 if the fluid is perfectly inviscid, loss can be 0arrow_forwardConsider a propeller spinning in air. The thrust produced by the propeller is given by T. The density of the air is p. The forward velocity of the air is V. The diameter of the propeller is D. The rotational velocity of the propeller is n. The dynamic viscosity of the air is u. Using Buckingham's pi theorem, find the non-dimensional formulation of T = f (p, V, D, n, µ). Note that the non-dimensional quantities are not sensitive to multiplicative inverses, i.e. and 2 have the same meaning, as does multiplication by a constant, for example, and 2 imply the same non-dimensional group. T pVD V nD T f( PµD pV V nD T pV VD nD =5( T pnD pD V O Oarrow_forwardIn an oil pool, a small steel ball is released from the surface (y=0) without initial velocity. The strength of the resistance force exerted by the oil against the movement of the ball is directly proportional to the speed of the ball (Fd = k*V , k: constant). Neglect the buoyant force exerted by the oil. (m = 0.2kg, k = 0.843550 kg/s, g = 9.81 m/s^2). a-) What is the limit speed of ball ( Vlim)? b-) What is the time it takes for the speed of the ball to reach 99% of the limit speed after it is released from the surface? c-) What is the depth at which the ball's velocity reaches 99% of the limit velocity after it is released from the surface?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Unit Conversion the Easy Way (Dimensional Analysis); Author: ketzbook;https://www.youtube.com/watch?v=HRe1mire4Gc;License: Standard YouTube License, CC-BY