Concept explainers
An incompressible fluid of density
Answer: Eu = f (Re,
The non -dimensional relationship parameters.
The non-dimensional for first pi terms.
The non-dimensional for second pi terms.
The non- dimensional for third pi terms.
The non-dimensional for fourth pi terms.
Answer to Problem 65P
The non -dimensional parameter for first pi terms is Euler number.
The non- dimensional parameter for second pi terms is Reynolds number.
The non -dimensional parameter for third pi terms is aspect ratio.
The non -dimensional parameter for fourth pi terms is roughness ratio.
The non-dimensional relationship is
Explanation of Solution
Given information:
A homogenous wire with a mass per unit length is
Write the expression for the moment of inertia of the link 3.
Here, the moment of inertia of the link 3 is
Write the expression for the moment of inertia of the link 4.
Here, the moment of inertia of the link 4 is
Write the expression for the centroidal component.
Write the expression for the moment of inertia of the link 5.
Here, the moment of inertia of the link 5 is
Write the dimension of the diameter of the pipe in
Here, the dimension for diameter of the pipe is
Write the dimension of the length of pipe in
Here, the dimensions for length of the pipe is
Write the dimension of the height of pipe in
Here, the dimension for the height of the pipe is
Write the expressions for the density.
Here, the mass is
Substitute
Write the expression for the pressure.
Here, the pressure is
Substitute
Write the dimension for the viscosity.
Write the dimension for the velocity.
Write the expression for the number of pi-terms.
Here, the number of variable is
Write the expression for first pi terms.
Here, the constant are
Write the dimension for pi term.
Write the expression for second pi terms.
Write the expression for third pi terms.
Write the expression for fourth pi terms.
Write the expression for relation between the pi terms.
Calculation:
The number of variables are
Substitute
Substitute
Compare the coefficients of
Compare the coefficients of
Compare the coefficients of
Substitute
Substitute
The non-dimensional for first pi terms is Euler number.
Substitute
Compare the coefficients of
Compare the coefficients of
Compare the coefficients of
Substitute
Substitute
The non-dimensional for second pi terms is Reynolds number.
Substitute
Compare the coefficients of
Compare the coefficients of
Compare the coefficients of
Substitute
Substitute
The non-dimensional for third pi terms is aspect ratio.
Substitute
Compare the coefficients of
Compare the coefficients of
Compare the coefficients of
Substitute
Substitute
The non-dimensional for fourth pi terms is roughness ratio.
Substitute
Conclusion:
The non -dimensional parameter for first pi terms is Euler number.
The non- dimensional parameter for second pi terms is Reynolds number.
The non -dimensional parameter for third pi terms is aspect ratio.
The non -dimensional parameter for fourth pi terms is roughness ratio.
The non-dimensional relationship is
Want to see more full solutions like this?
Chapter 7 Solutions
Fluid Mechanics Fundamentals And Applications
- I need expert handwritten solutions to this onlyarrow_forwardTwo large tanks, each holding 100 L of liquid, are interconnected by pipes, with the liquid flowing from tank A into tank B at a rate of 3 L/min and from B into A at a rate of 1 L/min (see Figure Q1). The liquid inside each tank is kept well stirred. A brine solution with a concentration of 0.2 kg/L of salt flows into tank A at a rate of 6 L/min. The diluted solution flows out of the system from tank A at 4 L/min and from tank B at 2 L/min. If, initially, tank A contains pure water and tank B contains 20 kg of salt. A 6 L/min 0.2 kg/L x(t) 100 L 4 L/min x(0) = 0 kg 3 L/min B y(t) 100 L y(0) = 20 kg 2 L/min 1 L/min Figure Q1 - Mixing problem for interconnected tanks Determine the mass of salt in each tank at time t > 0: Analytically (hand calculations)arrow_forwardTwo springs and two masses are attached in a straight vertical line as shown in Figure Q3. The system is set in motion by holding the mass m₂ at its equilibrium position and pushing the mass m₁ downwards of its equilibrium position a distance 2 m and then releasing both masses. if m₁ = m₂ = 1 kg, k₁ = 3 N/m and k₂ = 2 N/m. www.m k₁ = 3 (y₁ = 0). m₁ = 1 k2=2 (y₂ = 0) |m₂ = 1 Y2 y 2 System in static equilibrium (Net change in spring length =32-31) System in motion Figure Q3 - Coupled mass-spring system Determine the equations of motion y₁(t) and y₂(t) for the two masses m₁ and m₂ respectively: Analytically (hand calculations)arrow_forward
- 100 As a spring is heated, its spring constant decreases. Suppose the spring is heated and then cooled so that the spring constant at time t is k(t) = t sin N/m. If the mass-spring system has mass m = 2 kg and a damping constant b = 1 N-sec/m with initial conditions x(0) = 6 m and x'(0) = -5 m/sec and it is subjected to the harmonic external force f(t) = 100 cos 3t N. Find at least the first four nonzero terms in a power series expansion about t = 0, i.e. Maclaurin series expansion, for the displacement: Analytically (hand calculations)arrow_forwardthis is answer to a vibrations question. in the last part it states an assumption of x2, im not sure where this assumption comes from. an answer would be greatly appreciatedarrow_forwardPlease answer with the sketches.arrow_forward
- The beam is made of elastic perfectly plastic material. Determine the shape factor for the cross section of the beam (Figure Q3). [Take σy = 250 MPa, yNA = 110.94 mm, I = 78.08 x 106 mm²] y 25 mm 75 mm I 25 mm 200 mm 25 mm 125 Figure Q3arrow_forwardA beam of the cross section shown in Figure Q3 is made of a steel that is assumed to be elastic- perfectectly plastic material with E = 200 GPa and σy = 240 MPa. Determine: i. The shape factor of the cross section ii. The bending moment at which the plastic zones at the top and bottom of the bar are 30 mm thick. 15 mm 30 mm 15 mm 30 mm 30 mm 30 mmarrow_forwardA torque of magnitude T = 12 kNm is applied to the end of a tank containing compressed air under a pressure of 8 MPa (Figure Q1). The tank has a 180 mm inner diameter and a 12 mm wall thickness. As a result of several tensile tests, it has been found that tensile yeild strength is σy = 250 MPa for thr grade of steel used. Determine the factor of safety with respect to yeild, using: (a) The maximum shearing stress theory (b) The maximum distortion energy theory T Figure Q1arrow_forward
- An external pressure of 12 MPa is applied to a closed-end thick cylinder of internal diameter 150 mm and external diameter 300 mm. If the maximum hoop stress on the inner surface of the cylinder is limited to 30 MPa: (a) What maximum internal pressure can be applied to the cylinder? (b) Sketch the variation of hoop and radial stresses across the cylinder wall. (c) What will be the change in the outside diameter when the above pressure is applied? [Take E = 207 GPa and v = 0.29]arrow_forwardso A 4 I need a detailed drawing with explanation し i need drawing in solution motion is as follows; 1- Dwell 45°. Plot the displacement diagram for a cam with flat follower of width 14 mm. The required 2- Rising 60 mm in 90° with Simple Harmonic Motion. 3- Dwell 90°. 4- Falling 60 mm for 90° with Simple Harmonic Motion. 5- Dwell 45°. cam is 50 mm. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the か ---2-125 750 x2.01 98Parrow_forwardFigure below shows a link mechanism in which the link OA rotates uniformly in an anticlockwise direction at 10 rad/s. the lengths of the various links are OA=75 mm, OB-150 mm, BC=150 mm, CD-300 mm. Determine for the position shown, the sliding velocity of D. A 45 B Space Diagram o NTS (Not-to-Scale) C Darrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY