Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 39, Problem 14Q
To determine
To find:
The photon emission energies of an electron, which match with the photon absorption energy of the other four electrons.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
.8 O An electron is trapped in a one-dimensional infinite well
and is in its first excited state. Figure 39-27 indicates the five longest
wavelengths of light that the electron could absorb in transitions
from this initial state via a single photon absorption: A, = 80.78 nm,
A, = 33.66 nm, A = 19.23 nm, A, = 12.62 nm, and A, = 8.98 nm.
What is the width of the potential well?
%3D
%3!
2 (nm)
Figure 39-27 Problem 8.
We can approximate an electron moving in a nanowire (a small, thin wire) as a one-dimensional infi nite square-well potential. Let the wire be 2.0 μm long. The nanowire is cooled to a temperature of 13 K, and we assume the electron’s average kinetic energy is that of gas molecules at this temperature ( 3kT/2). (a) What are the three lowest possible energy levels of the electrons? (b) What is the approximate quantum number of electrons moving in the wire?
*24 Figure 39-30 shows a two-dimen-
sional, infinite-potential well lying in an
xy plane that contains an electron. We
probe for the electron along a line that
bisects L, and find three points at which
the detection probability is maximum. Figure 39-30 Problem 24.
Those points are separated by 2.00 nm.
Then we probe along a line that bisects L, and find five points at
which the detection probability is maximum. Those points are sep-
arated by 3.00 nm. What is the energy of the electron?
Chapter 39 Solutions
Fundamentals of Physics Extended
Ch. 39 - Prob. 1QCh. 39 - Prob. 2QCh. 39 - Prob. 3QCh. 39 - Prob. 4QCh. 39 - Prob. 5QCh. 39 - Prob. 6QCh. 39 - Prob. 7QCh. 39 - Prob. 8QCh. 39 - Prob. 9QCh. 39 - Prob. 10Q
Ch. 39 - Prob. 11QCh. 39 - Prob. 12QCh. 39 - Prob. 13QCh. 39 - Prob. 14QCh. 39 - Prob. 15QCh. 39 - Prob. 1PCh. 39 - Prob. 2PCh. 39 - Prob. 3PCh. 39 - Prob. 4PCh. 39 - Prob. 5PCh. 39 - Prob. 6PCh. 39 - Prob. 7PCh. 39 - Prob. 8PCh. 39 - Prob. 9PCh. 39 - Prob. 10PCh. 39 - Prob. 11PCh. 39 - Prob. 12PCh. 39 - Prob. 13PCh. 39 - Prob. 14PCh. 39 - Prob. 15PCh. 39 - Prob. 16PCh. 39 - Prob. 17PCh. 39 - Prob. 18PCh. 39 - Prob. 19PCh. 39 - Prob. 20PCh. 39 - Prob. 21PCh. 39 - Prob. 22PCh. 39 - Prob. 23PCh. 39 - Prob. 24PCh. 39 - Prob. 25PCh. 39 - Prob. 26PCh. 39 - Prob. 27PCh. 39 - Prob. 28PCh. 39 - Prob. 29PCh. 39 - Prob. 30PCh. 39 - Prob. 31PCh. 39 - Prob. 32PCh. 39 - Prob. 33PCh. 39 - Prob. 34PCh. 39 - Prob. 35PCh. 39 - Prob. 36PCh. 39 - Prob. 37PCh. 39 - Prob. 38PCh. 39 - Prob. 39PCh. 39 - Prob. 40PCh. 39 - Prob. 41PCh. 39 - Prob. 42PCh. 39 - Prob. 43PCh. 39 - Prob. 44PCh. 39 - Prob. 45PCh. 39 - Prob. 46PCh. 39 - Prob. 47PCh. 39 - Prob. 48PCh. 39 - Prob. 49PCh. 39 - Prob. 50PCh. 39 - Prob. 51PCh. 39 - Prob. 52PCh. 39 - Prob. 53PCh. 39 - Prob. 54PCh. 39 - Prob. 55PCh. 39 - Prob. 56PCh. 39 - Prob. 57PCh. 39 - Prob. 58PCh. 39 - Prob. 59PCh. 39 - Prob. 60PCh. 39 - Prob. 61PCh. 39 - Prob. 62PCh. 39 - Prob. 63PCh. 39 - Prob. 64PCh. 39 - A diatomic gas molcculc consistsof two atoms of...Ch. 39 - Prob. 66PCh. 39 - Prob. 67PCh. 39 - Prob. 68PCh. 39 - Prob. 69PCh. 39 - Prob. 70PCh. 39 - An old model of a hydrogen atom has the charge e...Ch. 39 - Prob. 72PCh. 39 - Prob. 73P
Knowledge Booster
Similar questions
- An electron is trapped in an infinitely deep one-dimensional well of width 0,251 nm. Initially the electron occupies the n=4 state. Suppose the electron jumps to the ground state with the accompanying emission of photon. What is the energy of the photon?arrow_forwardA nanoparticle containing 6 atoms can be modeled approximately as an Einstein solid of 18 independent oscillators. The evenly spaced energy levels of each oscillator are 5e-21 J apart. Use k = 1.4e-23 J/K. When the nanoparticle's energy is in the range 5(5e-21) J to 9(5e-21) J, what is the approximate heat capacity per atom?arrow_forwardWhat is the ground state energy (in eV) of a proton confined to a one-dimensional box the size of the uranium nucleus that has a radius of approximately 15.0 fm?arrow_forward
- An electron is trapped in a one-dimensional infinite well of width 250 pm and is in its ground state.What are the (a) longest, (b) second longest, and (c) third longest wavelengths of light that can excite the electron from the ground state via a single photon absorption?arrow_forwardAn electron is trapped in a one-dimensional box that is 326 nm wide. Initially, it is in the n is absorbed, the electron is in the n = 6 energy level. = What was the wavelength absorbed of the absorbed photon? W Aabsorbed 2 energy level but, after a photon m Eventually, the electron ends up in the ground state. As it does so, one or more photons are emitted during those transitions. Determine the wavelengths least and most of the least energetic and most energetic photons, respectively, that might be emitted during all the possible transitions to the ground state. least = m 2most marrow_forwardThe energy eigenvalues of a particle in a 3-D box of dimensions (a, b, c) is given by E (nx, ny, nz) -2²² (²²² +²2² +²2²) (a) Ten protons are confined in a box of dimension (a, 2a, a) on each side. Calculate the total energy of the ground state of these ten protons if we assume that the protons don't interact with each other. (b) If the ten protons are replaced by 10 neutral hydrogen atoms in the ground state, calculate the total energy resulting from the confinement. Again assume that the hydrogen atoms do not interact with each other. You can treat the mass of proton and hydrogen atom to be identical.arrow_forward
- JC-42) Probability to Find an Electron An electron in its ground state is trapped in the 1D Coulomb potential energy. What is the 0.99ao and x = probability to find it in the region between x = 1.01ao?arrow_forwardAn electron is in a certain energy state in a one-dimensional,infinite potential well from x=0 to x=L=200 pm. The electron’s probability density is zero at x=0.300L, and x=0.400L;it is not zero at intermediate values of x. The electron then jumpsto the next lower energy level by emitting light.What is the changein the electron’s energy?arrow_forwardAn electron in a one-dimensional infinite potential well of length L has ground-state energy E1.The length is changed to L' so that the new ground-state energy is E'1 = 0.500E1 .What is the ratio L'/L?arrow_forward
- A two-level quantum system has two non-degenerate energy levels ?0 = 0 meV and ?1 = 1 meV. Calculate the average energy of the two-level quantum system.arrow_forwardAn electron is bound in a square well that has a depth equal to six times the ground-level energy E1-IDW of an infinite well of the same width. The longest-wavelength photon that is absorbed by this electron has a wavelength of 582 nm. Determine the width of the well.arrow_forwardConsider photons at temperature T = 300K in a cubic box of volume 1 m' with periodic boundary conditions. a) Find the total number of photons in the lowest orbital state. What is the total energy of these photons? Hint: The 1-particle energy of photons is ɛ(k,s)=ħck = hc , independent of polarization s. Consider the Bose-Einstein distribution function (with u= 0) for the lowest-energy orbital states 2л k, = (1,0,0), k, =(0,1,0), k, =(0,0,1). Find the total number of photons that occupy L L L these states, taking into account that each of the orbital states has 2 polarizations s. b) Find the number of photons in a single orbital state with wavelength 2 = 5000 Å. What is the total energy of these photons?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax