Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 39, Problem 7Q
To determine
To find:
The factor you need to change to trap a positron in an idealized trap of figure 39.1.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
to
Radiation
V
Free
electron
Counter
Figure 2:
3. The radial e lectric field for the Geiger counter[see figure 2] is approximately given by E =
[use Gauss' Law for infinitely long
2περτ
concentric conducting cylinders of inner radius a and outer radius b] .
(a)The potential of the inner cylinder with respect to the outer cylinder and the electric field follow as:
2TEO
V
b
V
1
V = Va – V½ = | Ē
. dr =
dr
2T€or
In
2TE0
* E =
ln
(True, False)
%3D
In
b
а
a
a
(b) Assume the electric field is E =
V
1
b r
145µm , b = 1.8cm . If the radial electric field at a distance of 1.2cm from the axis of
and a =
ln
a
the wire is 2 × 10ªV/m The potential difference between the wire and the cylinder is 1060 Volts
(True,False).
if the chlorine molecule at 290K were to rotate at the angular frequency predicted by the equipartition theorem what would be the average centipital force ? ( the atoms of Cl are 2 x 10-10 m apart and the mass of the chlorine atom 35.45 a.m.u )
A hydrogen atom (with the Bohr radius of half an angstrom) is situated between two metal plates 1 mm apart, which are connected to opposite terminals of a 500 V battery. What fraction of the atomic radius does the separation distance d amount to, roughly? Estimate the voltage you would need with this apparatus to ionize the atom.
Chapter 39 Solutions
Fundamentals of Physics Extended
Ch. 39 - Prob. 1QCh. 39 - Prob. 2QCh. 39 - Prob. 3QCh. 39 - Prob. 4QCh. 39 - Prob. 5QCh. 39 - Prob. 6QCh. 39 - Prob. 7QCh. 39 - Prob. 8QCh. 39 - Prob. 9QCh. 39 - Prob. 10Q
Ch. 39 - Prob. 11QCh. 39 - Prob. 12QCh. 39 - Prob. 13QCh. 39 - Prob. 14QCh. 39 - Prob. 15QCh. 39 - Prob. 1PCh. 39 - Prob. 2PCh. 39 - Prob. 3PCh. 39 - Prob. 4PCh. 39 - Prob. 5PCh. 39 - Prob. 6PCh. 39 - Prob. 7PCh. 39 - Prob. 8PCh. 39 - Prob. 9PCh. 39 - Prob. 10PCh. 39 - Prob. 11PCh. 39 - Prob. 12PCh. 39 - Prob. 13PCh. 39 - Prob. 14PCh. 39 - Prob. 15PCh. 39 - Prob. 16PCh. 39 - Prob. 17PCh. 39 - Prob. 18PCh. 39 - Prob. 19PCh. 39 - Prob. 20PCh. 39 - Prob. 21PCh. 39 - Prob. 22PCh. 39 - Prob. 23PCh. 39 - Prob. 24PCh. 39 - Prob. 25PCh. 39 - Prob. 26PCh. 39 - Prob. 27PCh. 39 - Prob. 28PCh. 39 - Prob. 29PCh. 39 - Prob. 30PCh. 39 - Prob. 31PCh. 39 - Prob. 32PCh. 39 - Prob. 33PCh. 39 - Prob. 34PCh. 39 - Prob. 35PCh. 39 - Prob. 36PCh. 39 - Prob. 37PCh. 39 - Prob. 38PCh. 39 - Prob. 39PCh. 39 - Prob. 40PCh. 39 - Prob. 41PCh. 39 - Prob. 42PCh. 39 - Prob. 43PCh. 39 - Prob. 44PCh. 39 - Prob. 45PCh. 39 - Prob. 46PCh. 39 - Prob. 47PCh. 39 - Prob. 48PCh. 39 - Prob. 49PCh. 39 - Prob. 50PCh. 39 - Prob. 51PCh. 39 - Prob. 52PCh. 39 - Prob. 53PCh. 39 - Prob. 54PCh. 39 - Prob. 55PCh. 39 - Prob. 56PCh. 39 - Prob. 57PCh. 39 - Prob. 58PCh. 39 - Prob. 59PCh. 39 - Prob. 60PCh. 39 - Prob. 61PCh. 39 - Prob. 62PCh. 39 - Prob. 63PCh. 39 - Prob. 64PCh. 39 - A diatomic gas molcculc consistsof two atoms of...Ch. 39 - Prob. 66PCh. 39 - Prob. 67PCh. 39 - Prob. 68PCh. 39 - Prob. 69PCh. 39 - Prob. 70PCh. 39 - An old model of a hydrogen atom has the charge e...Ch. 39 - Prob. 72PCh. 39 - Prob. 73P
Knowledge Booster
Similar questions
- Consider a degenerate electron gas in which essentially all of theelectrons are highly relativistic (€ » mc2 ), so that their energies are € pc (where p is the magnitude of the momentum vector).(a) Modify the derivation given above to show that for a relativistic electron gas at zero temperature, the chemical potential (or Fermi energy) is given by μ = hc(3N/87πV)1/3.(b) Find a formula for the total energy of this system in terms of Nand μarrow_forwardA hole is the absence of an electron at a potential location for its existence. Given that a hole is the result of the absence of an electron, its mass should be zero. However, we regard the effective mass of a hole to be negative. Why?arrow_forward(VI.1) (a) Find the fields, and the charge and current distributions, corresponding to qct V (7, t) = 0, Ä(7, t) = r2 (b) Use the following gauge function to transform the above potentials and comment on the results. qct (c) Which of the potentials in (a) and (b) are in the Coulomb gauge? Note: use spherical coordinates, and apply the correct expression to calculate the deriva- tives with the del operator (V).arrow_forward
- Show that the form factor for the charge distribution of model I for a nucleus of radius a is F(q²) = 3{sin(qa/ħ)–(qa/h)cos(qa/h)} (qa/ħ)arrow_forwardQI) given a line charge distribution of where A(3 , π2,1) and B(4, π, 6) . 10 -12 C/m) on z axis, find VABarrow_forward.A neutral sodium atom has an ionization potential of 5.1 eV from its ground state.(1) What is the speed of a free electron that has just barely enough kinetic energy tocollisionally ionize a sodium atom in its ground state?(2) What is the speed of a free proton with just enough energy to collisionlly ionize thisatom?(3) What is the temperature of a gas in which the average electron kinetic energy is justbarely sufficient to ionize a sodium atom in its ground state?arrow_forward
- b) Find E at (0,4,0) P, = 2 mC 2 (0 4, 0)arrow_forwardConsider a system of N free electrons within a volume V. Even at absolute zero, such a system exerts a pressure P on its surroundings due to the motion of the electrons. To calculate this pressure, imagine that the volume increases by a small amount dV. The electrons will do an amount of work PdV on their surroundings, which means that the total energy Erot of the electrons will change by an amount dEtot = -PdV. Hence P = -dErot/dV. a) Show that the pressure of the electrons at absolute zero is 2 N P ==EFo, where Ero denotes the Fermi energy at absolute zero. b) Calculate Efo and P for solid copper, which has a free-electron concentration of 8.45 x 1028 m-3. Express Ero and P in electronvolts and atmospheres, respectively. c) The pressure you found in part (b) is extremely high. Why, then, don't the electrons in a piece of copper simply explode out of the metal?arrow_forwardThe population ratio between two energy levels ni nj separated in energy by: A E = E₁ - Ej with AE = 1.1×10-22 J is 0.84. That is: ni = 0.84 with AE = 1.1×10-22] nj Remember the Boltzmann equation for the population of particles in state i with energy Ei at temperature T is: N n₁ = = e Z What is the temperature of the system (use two sig figs)? 4.0 ✓ Karrow_forward
- Consider a proton confined within typical nuclear dimensions of 5×10^(−15) m. Estimate the minimum kinetic energy of the proton. Repeat this calculation for an electron confined within typical nuclear dimensions. Comment briefly on the physical significance of your results, given that the nuclear binding energy for a proton is typically in the range 1−10 MeVarrow_forwardTwo plates, illustrated below, are at OV and 10000 V, respectively, and are separated by a distance 10 cm. A ball of mass 2 g and charge 8 µC is fired towards the positive plate with an initial speed of v=4.0 m/s and initial position 3 cm to the right of the left plate. OV 10,000 V IIIIIIIIIIII 10 cm ++++++ +++ A) Plot V as a function of distance between the two plates. Draw several equipotential lines on the schematic above. B) What is the magnitude of the electric field between the two plates? Please draw several vectors to indicate the direction of the E field. C) How far to the right does the charge travel? What prevents it from moving any further?arrow_forwardPlease asaparrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax