Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 39, Problem 18P
To determine
To find:
The kinetic energy of electron
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Given the mass of an electron is 9x10-31kg, confined to infinite well of length (L) and has energy of 0.157 eV.
what is the probability of finding the electrong witin a strip that is 0.0175 nm wide centred at the postion x = 2.5 nm?
Consider a potential energy barrier like that of Fig. 39-13a but whose height Enot is 5.9 eV and whose thickness L is 0.84 nm. What is the energy of an incident electron whose transmission probability is 0.0040?
eV
pot
E
Electron
T
(a)
(8)
Figure 39-13.
Probability
density 4 (
En ergy
What is the probability that an electron in the 3d state is located at a radius greater than a0?
Chapter 39 Solutions
Fundamentals of Physics Extended
Ch. 39 - Prob. 1QCh. 39 - Prob. 2QCh. 39 - Prob. 3QCh. 39 - Prob. 4QCh. 39 - Prob. 5QCh. 39 - Prob. 6QCh. 39 - Prob. 7QCh. 39 - Prob. 8QCh. 39 - Prob. 9QCh. 39 - Prob. 10Q
Ch. 39 - Prob. 11QCh. 39 - Prob. 12QCh. 39 - Prob. 13QCh. 39 - Prob. 14QCh. 39 - Prob. 15QCh. 39 - Prob. 1PCh. 39 - Prob. 2PCh. 39 - Prob. 3PCh. 39 - Prob. 4PCh. 39 - Prob. 5PCh. 39 - Prob. 6PCh. 39 - Prob. 7PCh. 39 - Prob. 8PCh. 39 - Prob. 9PCh. 39 - Prob. 10PCh. 39 - Prob. 11PCh. 39 - Prob. 12PCh. 39 - Prob. 13PCh. 39 - Prob. 14PCh. 39 - Prob. 15PCh. 39 - Prob. 16PCh. 39 - Prob. 17PCh. 39 - Prob. 18PCh. 39 - Prob. 19PCh. 39 - Prob. 20PCh. 39 - Prob. 21PCh. 39 - Prob. 22PCh. 39 - Prob. 23PCh. 39 - Prob. 24PCh. 39 - Prob. 25PCh. 39 - Prob. 26PCh. 39 - Prob. 27PCh. 39 - Prob. 28PCh. 39 - Prob. 29PCh. 39 - Prob. 30PCh. 39 - Prob. 31PCh. 39 - Prob. 32PCh. 39 - Prob. 33PCh. 39 - Prob. 34PCh. 39 - Prob. 35PCh. 39 - Prob. 36PCh. 39 - Prob. 37PCh. 39 - Prob. 38PCh. 39 - Prob. 39PCh. 39 - Prob. 40PCh. 39 - Prob. 41PCh. 39 - Prob. 42PCh. 39 - Prob. 43PCh. 39 - Prob. 44PCh. 39 - Prob. 45PCh. 39 - Prob. 46PCh. 39 - Prob. 47PCh. 39 - Prob. 48PCh. 39 - Prob. 49PCh. 39 - Prob. 50PCh. 39 - Prob. 51PCh. 39 - Prob. 52PCh. 39 - Prob. 53PCh. 39 - Prob. 54PCh. 39 - Prob. 55PCh. 39 - Prob. 56PCh. 39 - Prob. 57PCh. 39 - Prob. 58PCh. 39 - Prob. 59PCh. 39 - Prob. 60PCh. 39 - Prob. 61PCh. 39 - Prob. 62PCh. 39 - Prob. 63PCh. 39 - Prob. 64PCh. 39 - A diatomic gas molcculc consistsof two atoms of...Ch. 39 - Prob. 66PCh. 39 - Prob. 67PCh. 39 - Prob. 68PCh. 39 - Prob. 69PCh. 39 - Prob. 70PCh. 39 - An old model of a hydrogen atom has the charge e...Ch. 39 - Prob. 72PCh. 39 - Prob. 73P
Knowledge Booster
Similar questions
- The wave function for H-atom in 1s state is given below. Explain the radial probability density of H-atom in 1s state and also write an expression for the same. Sketch schematically the plot of this vs. radial distance.arrow_forward> For o state |Y>= / 1/3 a)what is the expectation value for spin materia l (Sx). O What value do we get for Sx measurement and with what pro ba bilities.arrow_forward*24 Figure 39-30 shows a two-dimen- sional, infinite-potential well lying in an xy plane that contains an electron. We probe for the electron along a line that bisects L, and find three points at which the detection probability is maximum. Figure 39-30 Problem 24. Those points are separated by 2.00 nm. Then we probe along a line that bisects L, and find five points at which the detection probability is maximum. Those points are sep- arated by 3.00 nm. What is the energy of the electron?arrow_forward
- An electron is trapped in a one-dimensional infinite potential well that is 470 pm wide; the electron is in its ground state. What is the probability that you can detect the electron in an interval of width &x = 5.0 pm centered at x = 260 pm? (Hint: The interval 8x is so narrow that you can take the probability density to be constant within it.) Number Unitsarrow_forwardAn electron is trapped in a one-dimensional infinite potential well that is 430 pm wide; the electron is in its ground state. What is the probability that you can detect the electron in an interval of width &x = 5.0 pm centered at x = 260 pm? (Hint: The interval Sx is so narrow that you can take the probability density to be constant within it.) Number i Unitsarrow_forwardA quantum mechanical particle moving in one dimension between impenetrable barriers has energy levels ϵ,4ϵ,9ϵ,...ϵ, 4ϵ, 9ϵ, ... , that is En=ϵn2En=ϵ n2 . Suppose that ϵ=0.035eVϵ =0.035 eV for a certain such quantum system. What is the probability (as a percent) that such a system will be in its ground state when it is in contact with a reservoir at room temperature? The probability that the system will be in its ground state when it is in contact with a reservoir at room temperature isarrow_forward
- An electron is bound in a square well of depth U. = 6E1-Dw. What is the width of the well if its ground-state energy is 2.00 eV?arrow_forwardAn electron is trapped in an infi nite square-well potential of width 0.70 nm. If the electron is initially in the n = 4 state, what are the various photon energies that can be emitted as the electron jumps to the ground state?arrow_forwardAsap plzzzzz.. i vll upvotearrow_forward
- An electron with total energy En approaches a barrier of height Ub and thickness L . Calculate the transmission coefficient T. Where the energy En= 25.5 eV, Ub=34.005 eV the width L=75 pm is given .arrow_forwardAn electron is bound in a square well of depth U0 = 6E1-IDW. What is the width of the well if its ground-state energy is 2.00 eV?arrow_forwardA proton is confined in box whose width is d = 750 nm. It is in the n = 3 energy state. What is the probability that the proton will be found within a distance of d/n from one of the walls? [Hint: the average value sin2x over one or more of its cycles is 1/2.] Include a sketch of U(x) and ?(x).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning