Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 39, Problem 8Q
To determine
To find:
a) The number of points of zero probability for a state with n=4 in a finite potential well.
b) The number of points of maximum probability for a state with n=4 in a finite potential well.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An electron is trapped in a finite potential well that is deep enough to allow the electron to exist in a state with n= 4. How many points of (a) zero probability and (b) maximum probability does its matter wave have within the well?
Imagin
dimensional box that has per fectly
a particle of mass (m)in one-
"gid walls
the particle to
at x=o awd X-L,
confining
the region defined by (oex
A particle is confined to the one-dimensional infinite potential well of If the particle is in its ground state, what is its probability of detection between (a) x = 0 and x = 0.25L, (b) x = 0.75L and x = L, and (c) x = 0.25L and x = 0.75L?
Chapter 39 Solutions
Fundamentals of Physics Extended
Ch. 39 - Prob. 1QCh. 39 - Prob. 2QCh. 39 - Prob. 3QCh. 39 - Prob. 4QCh. 39 - Prob. 5QCh. 39 - Prob. 6QCh. 39 - Prob. 7QCh. 39 - Prob. 8QCh. 39 - Prob. 9QCh. 39 - Prob. 10Q
Ch. 39 - Prob. 11QCh. 39 - Prob. 12QCh. 39 - Prob. 13QCh. 39 - Prob. 14QCh. 39 - Prob. 15QCh. 39 - Prob. 1PCh. 39 - Prob. 2PCh. 39 - Prob. 3PCh. 39 - Prob. 4PCh. 39 - Prob. 5PCh. 39 - Prob. 6PCh. 39 - Prob. 7PCh. 39 - Prob. 8PCh. 39 - Prob. 9PCh. 39 - Prob. 10PCh. 39 - Prob. 11PCh. 39 - Prob. 12PCh. 39 - Prob. 13PCh. 39 - Prob. 14PCh. 39 - Prob. 15PCh. 39 - Prob. 16PCh. 39 - Prob. 17PCh. 39 - Prob. 18PCh. 39 - Prob. 19PCh. 39 - Prob. 20PCh. 39 - Prob. 21PCh. 39 - Prob. 22PCh. 39 - Prob. 23PCh. 39 - Prob. 24PCh. 39 - Prob. 25PCh. 39 - Prob. 26PCh. 39 - Prob. 27PCh. 39 - Prob. 28PCh. 39 - Prob. 29PCh. 39 - Prob. 30PCh. 39 - Prob. 31PCh. 39 - Prob. 32PCh. 39 - Prob. 33PCh. 39 - Prob. 34PCh. 39 - Prob. 35PCh. 39 - Prob. 36PCh. 39 - Prob. 37PCh. 39 - Prob. 38PCh. 39 - Prob. 39PCh. 39 - Prob. 40PCh. 39 - Prob. 41PCh. 39 - Prob. 42PCh. 39 - Prob. 43PCh. 39 - Prob. 44PCh. 39 - Prob. 45PCh. 39 - Prob. 46PCh. 39 - Prob. 47PCh. 39 - Prob. 48PCh. 39 - Prob. 49PCh. 39 - Prob. 50PCh. 39 - Prob. 51PCh. 39 - Prob. 52PCh. 39 - Prob. 53PCh. 39 - Prob. 54PCh. 39 - Prob. 55PCh. 39 - Prob. 56PCh. 39 - Prob. 57PCh. 39 - Prob. 58PCh. 39 - Prob. 59PCh. 39 - Prob. 60PCh. 39 - Prob. 61PCh. 39 - Prob. 62PCh. 39 - Prob. 63PCh. 39 - Prob. 64PCh. 39 - A diatomic gas molcculc consistsof two atoms of...Ch. 39 - Prob. 66PCh. 39 - Prob. 67PCh. 39 - Prob. 68PCh. 39 - Prob. 69PCh. 39 - Prob. 70PCh. 39 - An old model of a hydrogen atom has the charge e...Ch. 39 - Prob. 72PCh. 39 - Prob. 73P
Knowledge Booster
Similar questions
- Check Your Understanding Suppose that a particle with energy E is moving along the x-axis and is in the region O and L. One possible wave function is (x,t)={AeiEt/hsinxL, when 0xL otherwise Determine the normalization constant.arrow_forwardCheck Your Understanding Which of the following wave functions is valid wave-function solution for Schr0dinger’s equation?arrow_forwardWhat is the ground state energy (in eV) of a proton confined to a one-dimensional box the size of the uranium nucleus that has a radius of approximately 15.0 fm?arrow_forward
- Check Your Understanding Find the expectation value of the position for a particle in the ground state of a harmonic oscillator using symmetry.arrow_forwardCheck Your Understanding A sodium atom nukes a transition from the first excited state the wound state, emitting a 589.0-nm photon with energy 2.105 eV. If the lifetime of this excited state is 16108s, what is the uncertainty in energy of this state? What is width of the corresponding line?arrow_forwardA particle is in the ground state of an inifite square well with walls at x = 0 and x = a. Suddenly the right wall moves from x = a to x = 2a. If the energy of the particle is measured after the wall expansion, what will be the most probable value of the probability of getting this resultarrow_forward
- A quantum mechanical particle moving in one dimension between impenetrable barriers has energy levels ϵ,4ϵ,9ϵ,...ϵ, 4ϵ, 9ϵ, ... , that is En=ϵn2En=ϵ n2 . Suppose that ϵ=0.035eVϵ =0.035 eV for a certain such quantum system. What is the probability (as a percent) that such a system will be in its ground state when it is in contact with a reservoir at room temperature? The probability that the system will be in its ground state when it is in contact with a reservoir at room temperature isarrow_forwardquantum physicsarrow_forwardGiven the mass of an electron is 9x10-31kg, confined to infinite well of length (L) and has energy of 0.157 eV. what is the probability of finding the electrong witin a strip that is 0.0175 nm wide centred at the postion x = 2.5 nm?arrow_forward
- A 30-eV electron is incident on a square barrier of height 40 eV.(A) What is the probability that the electron tunnels through the barrier if its width is 1.0 nm?arrow_forwardAn electron is trapped in a one-dimensional infinite potential well that is 460 pm wide; the electron is in its ground state. What is the probability that you can detect the electron in an interval of width δx = 5.0 pm centered at x = 300 pm? (Hint: The interval δx is so narrow that you can take the probability density to be constant within it.)arrow_forwardA particle in a spherically symmetric potential is in a state described by the wave packet (x, y, z) = C(xy + yz + zx)e¯ar What is the probability that a measurement of the square of the angular momentum yields 0? What is the probability that it yields 6h? If the value of l is found to be 2, what are the relative probabili- ties for m = 2, 1, 0, –1, –2?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning