Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 39, Problem 7P
To determine
To find:
The ground state energy of the electron.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
We are going to use Heisenberg's uncertainty principle to estimate the ground-
state energy of hydrogen. In our model, the electron is confined in a one-
dimensional well with a length about the size of hydrogen, so that Ax = 0.0529
nm. Estimate Ap, and then assume that the ground-state energy is
roughly Ap2/2me. (Give your answer in Joules or electron-volts.)
An electron is confined to move in the xy plane in a rectangle whose dimensions are Lx and Ly. That is, the electron is trapped in a two dimensional potential well having lengths of Lx and Ly. In this situation, the allowed energies of the electron depend on the quant numbers Nx and Ny, the allowed energies are given by
E = H^2/8Me ( Nx^2/ Lx^2 + Ny^2/Ly^2)
i) assuming Lx and Ly =L. Find the energies of the lowest for all energy levels of the electron
ii) construct an energy level diagram for the electron and determine the energy difference between the second exited state and the ground state?
Please give a detailed explanation. The answer is 2.
Chapter 39 Solutions
Fundamentals of Physics Extended
Ch. 39 - Prob. 1QCh. 39 - Prob. 2QCh. 39 - Prob. 3QCh. 39 - Prob. 4QCh. 39 - Prob. 5QCh. 39 - Prob. 6QCh. 39 - Prob. 7QCh. 39 - Prob. 8QCh. 39 - Prob. 9QCh. 39 - Prob. 10Q
Ch. 39 - Prob. 11QCh. 39 - Prob. 12QCh. 39 - Prob. 13QCh. 39 - Prob. 14QCh. 39 - Prob. 15QCh. 39 - Prob. 1PCh. 39 - Prob. 2PCh. 39 - Prob. 3PCh. 39 - Prob. 4PCh. 39 - Prob. 5PCh. 39 - Prob. 6PCh. 39 - Prob. 7PCh. 39 - Prob. 8PCh. 39 - Prob. 9PCh. 39 - Prob. 10PCh. 39 - Prob. 11PCh. 39 - Prob. 12PCh. 39 - Prob. 13PCh. 39 - Prob. 14PCh. 39 - Prob. 15PCh. 39 - Prob. 16PCh. 39 - Prob. 17PCh. 39 - Prob. 18PCh. 39 - Prob. 19PCh. 39 - Prob. 20PCh. 39 - Prob. 21PCh. 39 - Prob. 22PCh. 39 - Prob. 23PCh. 39 - Prob. 24PCh. 39 - Prob. 25PCh. 39 - Prob. 26PCh. 39 - Prob. 27PCh. 39 - Prob. 28PCh. 39 - Prob. 29PCh. 39 - Prob. 30PCh. 39 - Prob. 31PCh. 39 - Prob. 32PCh. 39 - Prob. 33PCh. 39 - Prob. 34PCh. 39 - Prob. 35PCh. 39 - Prob. 36PCh. 39 - Prob. 37PCh. 39 - Prob. 38PCh. 39 - Prob. 39PCh. 39 - Prob. 40PCh. 39 - Prob. 41PCh. 39 - Prob. 42PCh. 39 - Prob. 43PCh. 39 - Prob. 44PCh. 39 - Prob. 45PCh. 39 - Prob. 46PCh. 39 - Prob. 47PCh. 39 - Prob. 48PCh. 39 - Prob. 49PCh. 39 - Prob. 50PCh. 39 - Prob. 51PCh. 39 - Prob. 52PCh. 39 - Prob. 53PCh. 39 - Prob. 54PCh. 39 - Prob. 55PCh. 39 - Prob. 56PCh. 39 - Prob. 57PCh. 39 - Prob. 58PCh. 39 - Prob. 59PCh. 39 - Prob. 60PCh. 39 - Prob. 61PCh. 39 - Prob. 62PCh. 39 - Prob. 63PCh. 39 - Prob. 64PCh. 39 - A diatomic gas molcculc consistsof two atoms of...Ch. 39 - Prob. 66PCh. 39 - Prob. 67PCh. 39 - Prob. 68PCh. 39 - Prob. 69PCh. 39 - Prob. 70PCh. 39 - An old model of a hydrogen atom has the charge e...Ch. 39 - Prob. 72PCh. 39 - Prob. 73P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Asap plzzzzz.. i vll upvotearrow_forwardAn electron is trapped in a one-dimensional region of length 1.00 x 10-10 m (a typical atomic diameter). (a) Find the energies of the ground state and first two excited states. (b) How much energy must be supplied to excite the electron from the ground state to the sec- ond excited state? (c) From the second excited state, the electron drops down to the first excited state. How much energy is released in this process?arrow_forwardAn electron in a one-dimensional infinite potential well of length L has ground-state energy E1.The length is changed to L' so that the new ground-state energy is E'1 = 0.500E1 .What is the ratio L'/L?arrow_forward
- Assume that the nucleus of an atom can be regarded as a three-dimensional box of width 2:10-¹4 m. If a proton moves as a particle in this box, find (a) the ground-state energy of proton in MeV and (b) the energies of the first excited state. (c) What are the degenerates of these states? Constants: h = 6.626-10-34 [J-s], m = 1.673-10-27 [kg] and ħ=h/2π.arrow_forwardA nanoparticle containing 6 atoms can be modeled approximately as an Einstein solid of 18 independent oscillators. The evenly spaced energy levels of each oscillator are 5e-21 J apart. Use k = 1.4e-23 J/K. When the nanoparticle's energy is in the range 5(5e-21) J to 9(5e-21) J, what is the approximate heat capacity per atom?arrow_forward▼ Part A For an electron in the 1s state of hydrogen, what is the probability of being in a spherical shell of thickness 1.00×10-2 ap at distance aB? ▸ View Available Hint(s) 15. ΑΣΦ ? Part B For an electron in the 1s state of hydrogen, what is the probability of being in a spherical shell of thickness 1.00×10-2 ag at distance ag from the proton? ▸ View Available Hint(s) [5] ΑΣΦ ? Submit Submitarrow_forward
- What is the ground-state energy of (a) an electron and (b) a proton if each is trapped in a one-dimensional infinite potential well that is 273 pm wide? (a) Number 8.083824566 Units eV (b) Number 4.401408127 Units eVarrow_forwardImpurities in solids can be sometimes described by a particle-in-a-box model. Suppose He is substituted for Xe, and assume a particle-in-a-cubic-box model, the length of whose sides is equal to the atomic diameter of Xe (≈ 2.62 Å). Compute the lowest excitation energy for the He atom’s motion. (This is the energy difference between the ground state and the first excited state.)arrow_forwardAn experimental nanoelectronic device confines electrons to a layer only 0.92 nm thick, which acts like a one-dimensional infinite square well. Find the energies of the ground state and the first two excited states of these electrons. Constants: h = 6.626-10-34 [J-s], m= 9.109-10-³¹ [kg] and ħ=h/2π.arrow_forward
- Assume that the nucleus of an atom can be regarded as a three-dimensional box of width 2·10-14 m. If a proton moves as a particle in this box, find: (a) The ground-state energy of proton in MeV. (b) The energies of the first and second excited sates. (c) What are the degenerates of these states?arrow_forwardAn electron is trapped in a one-dimensional infinite potential well that is 170 pm wide; the electron is in its ground state. What is the probability that you can detect the electron in an interval of width ôx = 5.0 pm centered at x = 81 pm? (Hint: The interval ôx is so narrow that you can take the probability density to be constant within it.) %3D Number Units T h ルarrow_forwardssuming non-interacting electrons, what is the ground state energy for the helium atom (two protons, two electrons) in electron volts?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning