Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 39, Problem 16P
To determine
To find:
a) Probability of finding an particle in the interval
b) Probability of finding an particle in the interval
c) Probability of finding an particle in the interval
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Harmonic oscillator eigenstates have the general form
1 μω ,1/4
μω
AG)(√(-)
n
ħ
In this formula, which part determines the number of nodes in the harmonic oscillator state?
=
y (x)
1
√(™
ћn
2"n!
Holev
1/4
μω
1
2"n!
exp(-1022²)
2ħ
μω
ħ
2"n!
exp
μω χ
2ħ
2
An electron is trapped in an infinitely deep one-dimensional well of width 0,251 nm. Initially the electron occupies the n=4 state. Suppose the electron jumps to the ground state with the accompanying emission of photon. What is the energy of the photon?
A particle of massm in a harmonic oscillator potential with angular frequency w is in the state
(1 + {t)쭈
What is (p?) for this particle?
mhw
2
O 6mħw
O 3mhw
Chapter 39 Solutions
Fundamentals of Physics Extended
Ch. 39 - Prob. 1QCh. 39 - Prob. 2QCh. 39 - Prob. 3QCh. 39 - Prob. 4QCh. 39 - Prob. 5QCh. 39 - Prob. 6QCh. 39 - Prob. 7QCh. 39 - Prob. 8QCh. 39 - Prob. 9QCh. 39 - Prob. 10Q
Ch. 39 - Prob. 11QCh. 39 - Prob. 12QCh. 39 - Prob. 13QCh. 39 - Prob. 14QCh. 39 - Prob. 15QCh. 39 - Prob. 1PCh. 39 - Prob. 2PCh. 39 - Prob. 3PCh. 39 - Prob. 4PCh. 39 - Prob. 5PCh. 39 - Prob. 6PCh. 39 - Prob. 7PCh. 39 - Prob. 8PCh. 39 - Prob. 9PCh. 39 - Prob. 10PCh. 39 - Prob. 11PCh. 39 - Prob. 12PCh. 39 - Prob. 13PCh. 39 - Prob. 14PCh. 39 - Prob. 15PCh. 39 - Prob. 16PCh. 39 - Prob. 17PCh. 39 - Prob. 18PCh. 39 - Prob. 19PCh. 39 - Prob. 20PCh. 39 - Prob. 21PCh. 39 - Prob. 22PCh. 39 - Prob. 23PCh. 39 - Prob. 24PCh. 39 - Prob. 25PCh. 39 - Prob. 26PCh. 39 - Prob. 27PCh. 39 - Prob. 28PCh. 39 - Prob. 29PCh. 39 - Prob. 30PCh. 39 - Prob. 31PCh. 39 - Prob. 32PCh. 39 - Prob. 33PCh. 39 - Prob. 34PCh. 39 - Prob. 35PCh. 39 - Prob. 36PCh. 39 - Prob. 37PCh. 39 - Prob. 38PCh. 39 - Prob. 39PCh. 39 - Prob. 40PCh. 39 - Prob. 41PCh. 39 - Prob. 42PCh. 39 - Prob. 43PCh. 39 - Prob. 44PCh. 39 - Prob. 45PCh. 39 - Prob. 46PCh. 39 - Prob. 47PCh. 39 - Prob. 48PCh. 39 - Prob. 49PCh. 39 - Prob. 50PCh. 39 - Prob. 51PCh. 39 - Prob. 52PCh. 39 - Prob. 53PCh. 39 - Prob. 54PCh. 39 - Prob. 55PCh. 39 - Prob. 56PCh. 39 - Prob. 57PCh. 39 - Prob. 58PCh. 39 - Prob. 59PCh. 39 - Prob. 60PCh. 39 - Prob. 61PCh. 39 - Prob. 62PCh. 39 - Prob. 63PCh. 39 - Prob. 64PCh. 39 - A diatomic gas molcculc consistsof two atoms of...Ch. 39 - Prob. 66PCh. 39 - Prob. 67PCh. 39 - Prob. 68PCh. 39 - Prob. 69PCh. 39 - Prob. 70PCh. 39 - An old model of a hydrogen atom has the charge e...Ch. 39 - Prob. 72PCh. 39 - Prob. 73P
Knowledge Booster
Similar questions
- *24 Figure 39-30 shows a two-dimen- sional, infinite-potential well lying in an xy plane that contains an electron. We probe for the electron along a line that bisects L, and find three points at which the detection probability is maximum. Figure 39-30 Problem 24. Those points are separated by 2.00 nm. Then we probe along a line that bisects L, and find five points at which the detection probability is maximum. Those points are sep- arated by 3.00 nm. What is the energy of the electron?arrow_forwardA particle of mass m is moving in an infinite 1D quantum well of width L. y,(x) = J? sinx. sin nAx L (a) How much energy must be given to the particle so it can transition from the ground state to the second excited state? (b) If the particle is in the first excited state, what is the probability of finding the particle between x = and x = ;? 2.arrow_forwardThree electrons are trapped in three different one-dimensional infinite potential wells of widths (a) 50 pm, (b) 200 pm, and (c) 100 pm. Rank the electrons according to their ground-state energies, greatest first.arrow_forward
- 22 A particle is confined to the one-dimensional infinite poten- tial well of Fig. 39-2. If the particle is in its ground state, what is its probability of detection between (a) x = 0 and x = 0.30L. (b) x = 0.70L and x = L, and (c) x = 0.30L and x = 0.70L? U(x) Fig 39-2arrow_forwardA particle is confined within a three-dimensional cubical box of side L. Determine the L probability of finding the particle somewhere in the region between y = 0 and y =- for 4 the particle in the ground state. (a) 0.0813 (b) 0.250 (c) 0.182 (d) 0.0908arrow_forwardAn electron confined to a one-dimensional box of length is in its third energy state. What is the probability of finding the electron in the region x = 0 to x = {/4?|arrow_forward
- .8 O An electron is trapped in a one-dimensional infinite well and is in its first excited state. Figure 39-27 indicates the five longest wavelengths of light that the electron could absorb in transitions from this initial state via a single photon absorption: A, = 80.78 nm, A, = 33.66 nm, A = 19.23 nm, A, = 12.62 nm, and A, = 8.98 nm. What is the width of the potential well? %3D %3! 2 (nm) Figure 39-27 Problem 8.arrow_forwardThe energy eigenvalues of a particle in a 3-D box of dimensions (a, b, c) is given by E (nx, ny, nz) -2²² (²²² +²2² +²2²) (a) Ten protons are confined in a box of dimension (a, 2a, a) on each side. Calculate the total energy of the ground state of these ten protons if we assume that the protons don't interact with each other. (b) If the ten protons are replaced by 10 neutral hydrogen atoms in the ground state, calculate the total energy resulting from the confinement. Again assume that the hydrogen atoms do not interact with each other. You can treat the mass of proton and hydrogen atom to be identical.arrow_forwardD4arrow_forward
- A particle is trapped in an infinite one-dimensional well of width L. If the particle is in its ground state, evaluate the probability to find the particle (a) between x = x = L/3; (b) between x = L/3 and x = x = 2L/3 and x = L. O and 2L/3; (c) between %3Darrow_forwardJC-42) Probability to Find an Electron An electron in its ground state is trapped in the 1D Coulomb potential energy. What is the 0.99ao and x = probability to find it in the region between x = 1.01ao?arrow_forwardThe general solution of the Schrodinger equation for a particle confined in an infinite square-well potential (where V = 0) of width L is w(x)= C sin kx + Dcos kx V2mE k where C and D are constants, E is the energy of the particle and m is the mass of the particle. Show that the energy E of the particle inside the square-well potential is quantised.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax