Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 39, Problem 58P
To determine
To show:
a) The wave function
b) Find expression for k.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An electron is limited to a linear molecule 1.0 nm long. (a) Calculate (i) h minimum electron energy and (ii) the minimum excitation energy from the fundamental condition. (b) What is the probability of finding the electron in the region between x = 0 and x = 0.2 nm, when it is in the ground state?
1
Given the mass of an electron is 9x10-31kg, confined to infinite well of length (L) and has energy of 0.157 eV.
what is the probability of finding the electrong witin a strip that is 0.0175 nm wide centred at the postion x = 2.5 nm?
Chapter 39 Solutions
Fundamentals of Physics Extended
Ch. 39 - Prob. 1QCh. 39 - Prob. 2QCh. 39 - Prob. 3QCh. 39 - Prob. 4QCh. 39 - Prob. 5QCh. 39 - Prob. 6QCh. 39 - Prob. 7QCh. 39 - Prob. 8QCh. 39 - Prob. 9QCh. 39 - Prob. 10Q
Ch. 39 - Prob. 11QCh. 39 - Prob. 12QCh. 39 - Prob. 13QCh. 39 - Prob. 14QCh. 39 - Prob. 15QCh. 39 - Prob. 1PCh. 39 - Prob. 2PCh. 39 - Prob. 3PCh. 39 - Prob. 4PCh. 39 - Prob. 5PCh. 39 - Prob. 6PCh. 39 - Prob. 7PCh. 39 - Prob. 8PCh. 39 - Prob. 9PCh. 39 - Prob. 10PCh. 39 - Prob. 11PCh. 39 - Prob. 12PCh. 39 - Prob. 13PCh. 39 - Prob. 14PCh. 39 - Prob. 15PCh. 39 - Prob. 16PCh. 39 - Prob. 17PCh. 39 - Prob. 18PCh. 39 - Prob. 19PCh. 39 - Prob. 20PCh. 39 - Prob. 21PCh. 39 - Prob. 22PCh. 39 - Prob. 23PCh. 39 - Prob. 24PCh. 39 - Prob. 25PCh. 39 - Prob. 26PCh. 39 - Prob. 27PCh. 39 - Prob. 28PCh. 39 - Prob. 29PCh. 39 - Prob. 30PCh. 39 - Prob. 31PCh. 39 - Prob. 32PCh. 39 - Prob. 33PCh. 39 - Prob. 34PCh. 39 - Prob. 35PCh. 39 - Prob. 36PCh. 39 - Prob. 37PCh. 39 - Prob. 38PCh. 39 - Prob. 39PCh. 39 - Prob. 40PCh. 39 - Prob. 41PCh. 39 - Prob. 42PCh. 39 - Prob. 43PCh. 39 - Prob. 44PCh. 39 - Prob. 45PCh. 39 - Prob. 46PCh. 39 - Prob. 47PCh. 39 - Prob. 48PCh. 39 - Prob. 49PCh. 39 - Prob. 50PCh. 39 - Prob. 51PCh. 39 - Prob. 52PCh. 39 - Prob. 53PCh. 39 - Prob. 54PCh. 39 - Prob. 55PCh. 39 - Prob. 56PCh. 39 - Prob. 57PCh. 39 - Prob. 58PCh. 39 - Prob. 59PCh. 39 - Prob. 60PCh. 39 - Prob. 61PCh. 39 - Prob. 62PCh. 39 - Prob. 63PCh. 39 - Prob. 64PCh. 39 - A diatomic gas molcculc consistsof two atoms of...Ch. 39 - Prob. 66PCh. 39 - Prob. 67PCh. 39 - Prob. 68PCh. 39 - Prob. 69PCh. 39 - Prob. 70PCh. 39 - An old model of a hydrogen atom has the charge e...Ch. 39 - Prob. 72PCh. 39 - Prob. 73P
Knowledge Booster
Similar questions
- In STM, an elevation of the tip above the surface being scanned can be determined with a great precision, because the tunneling-electron current between surface atoms and the atoms of the tip is extremely sensitive to the variation of the separation gap between them from point to point along the surface. Assuming that the tunneling-electron current is in direct proportion to the tunneling probability and that the tunneling probability is to a gotxi approximation expressed by the exponential function e2L with =10.0/nm , determine the ratio of the tunneling current when the tip is 0.500 nm above the surface to the current when the tip is 0.515 nm above the surface.arrow_forwardThe Einstein's model makes the assumption that a solid can be treated a set of N identical, independent harmonic oscillators. Compute the heat capacity for such a system. Make the simplifying assumption that a single harmonic oscillator is described by the quantized energy levels: E, = kħw, where k = 0,1, 2, ....arrow_forwardAn electron with total energy En approaches a barrier of height Ub and thickness L . Calculate the transmission coefficient T. Where the energy En= 25.5 eV, Ub=34.005 eV the width L=75 pm is given .arrow_forward
- (a) Write the expression of average no. of particle (s) in particular single particle quantum state (s) for a quantum gas of N identical particle at temp. T. If partilcle is fermion then show that- Here B - ns = 1 kT 1 ea+Bei +1 energy of state.arrow_forwardA 40 eV atom of mass M1 strikes a lattice atom of mass M2 = 2M1. What is the probability that the lattice atom is displaced? Assume hard-sphere scattering and displacement energy of 25 eV.arrow_forwardConsider the electron-hole overlap integral Mnn for a quantum well given by: Mn Pen (2) Pnn (z) dz. %3D - 00 n' and zerd (i) Show that Mon is unity if n otherwise in a quantum well with infinite barriers. (ii) Show that Mon is zero if (n-n') is an odd number in a quantum well with finite barriers.arrow_forward
- A beam of electrons with kinetic energy 350 eV is incident normal to the surface of a KC1 crystal that has been cut so that the spacing d between adjacent atoms in the planes parallel to the surface is 0.315 nm. (a) There are multiple diffraction peaks from this scattering corresponding to different inte- gers n in the Bragg condition. Show that there is a maximum n above which diffraction peaks are not possible, and find this integer nmax. (b) Calculate the angles at which diffraction peaks will occur for all orders that are possible.arrow_forwardA proton is confined in box whose width is d = 750 nm. It is in the n = 3 energy state. What is the probability that the proton will be found within a distance of d/n from one of the walls? [Hint: the average value sin2x over one or more of its cycles is 1/2.] Include a sketch of U(x) and ?(x).arrow_forwardThe Einstein's model makes the assumption that a solid can be treated a set of N identical, independent harmonic oscillators. Compute the heat capacity for such a system. Make the simplifying assumption that a single harmonic oscillator is described by the quantized energy levels: Ek=kℏω, where k=0,1,2,….arrow_forward
- An electron is confined in a threc-dimensional infinite potential well. T'he sides parallel to the r-, y-, and z-axes arc of length L each. (a) Write the appropriate Schrödinger equation. (b) Write the time-independent wave function corrcsponding to the state of the lowest possible energy. (c) Give an expression for the nunber of states, N, having energy lcss than some given E. Assume N > 1.arrow_forwardQuestion 1An electron is trapped in a region between two infinitely high energy barriers. In the regionbetween the walls the potential energy of the electron is zero. The normalised wavefunction of the electron in the region between the walls is ?(?) = ? sin ??, where ? =0.50 nm−1/2and ? = 1.18 nm−1.(a) Calculate the energy of the electron in this state of motion.Question 2In some physical situations, the behaviour of an electron can be approximated as if theelectron were bound to an equilibrium position by a spring force (?(?) = −??, ?(?) =??22,where ? is the spring constant). Suppose such an electron were in the first excited state,with a wave function ?(?) = ???−??2, where ? is a constant, ? = √??/2ℏ and ?represents the distance of the electron from its equilibrium position.(a) Calculate the energy of the electron in terms of ? and its mass ?.(b) If the electron behaved like a classical oscillating particle, the largest value of ?would be ??. Show that ?? = √3ℏ. (??)−1/4.arrow_forward*24 Figure 39-30 shows a two-dimen- sional, infinite-potential well lying in an xy plane that contains an electron. We probe for the electron along a line that bisects L, and find three points at which the detection probability is maximum. Figure 39-30 Problem 24. Those points are separated by 2.00 nm. Then we probe along a line that bisects L, and find five points at which the detection probability is maximum. Those points are sep- arated by 3.00 nm. What is the energy of the electron?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning