Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 39, Problem 32P
To determine
To find:
Net energy absorbed by the atom
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An atom (not a hydrogen atom) absorbs a photon whose associated
wavelength is 375 nm and then immediately emits a photon whose
associated wavelength is 580 nm. How much net energy in eV is
absorbed by the atom in this process.
An atom (not a hydrogen atom) absorbs a photon whose associated wavelength is 375 nm and then immediately emits a photon whose associated wavelength is 580 nm. How much net energy is absorbed by the atom in this process?
A light detector (your eye) has an area of 2.00*10-6 m2 and absorbs 80% of the incident light, which is at wavelength 500 nm. The detector faces an isotropic source, 3.00 m from the source. If the detector absorbs photons at the rate of exactly 4.000 s-1, at what power does the emitter emit light?
Chapter 39 Solutions
Fundamentals of Physics Extended
Ch. 39 - Prob. 1QCh. 39 - Prob. 2QCh. 39 - Prob. 3QCh. 39 - Prob. 4QCh. 39 - Prob. 5QCh. 39 - Prob. 6QCh. 39 - Prob. 7QCh. 39 - Prob. 8QCh. 39 - Prob. 9QCh. 39 - Prob. 10Q
Ch. 39 - Prob. 11QCh. 39 - Prob. 12QCh. 39 - Prob. 13QCh. 39 - Prob. 14QCh. 39 - Prob. 15QCh. 39 - Prob. 1PCh. 39 - Prob. 2PCh. 39 - Prob. 3PCh. 39 - Prob. 4PCh. 39 - Prob. 5PCh. 39 - Prob. 6PCh. 39 - Prob. 7PCh. 39 - Prob. 8PCh. 39 - Prob. 9PCh. 39 - Prob. 10PCh. 39 - Prob. 11PCh. 39 - Prob. 12PCh. 39 - Prob. 13PCh. 39 - Prob. 14PCh. 39 - Prob. 15PCh. 39 - Prob. 16PCh. 39 - Prob. 17PCh. 39 - Prob. 18PCh. 39 - Prob. 19PCh. 39 - Prob. 20PCh. 39 - Prob. 21PCh. 39 - Prob. 22PCh. 39 - Prob. 23PCh. 39 - Prob. 24PCh. 39 - Prob. 25PCh. 39 - Prob. 26PCh. 39 - Prob. 27PCh. 39 - Prob. 28PCh. 39 - Prob. 29PCh. 39 - Prob. 30PCh. 39 - Prob. 31PCh. 39 - Prob. 32PCh. 39 - Prob. 33PCh. 39 - Prob. 34PCh. 39 - Prob. 35PCh. 39 - Prob. 36PCh. 39 - Prob. 37PCh. 39 - Prob. 38PCh. 39 - Prob. 39PCh. 39 - Prob. 40PCh. 39 - Prob. 41PCh. 39 - Prob. 42PCh. 39 - Prob. 43PCh. 39 - Prob. 44PCh. 39 - Prob. 45PCh. 39 - Prob. 46PCh. 39 - Prob. 47PCh. 39 - Prob. 48PCh. 39 - Prob. 49PCh. 39 - Prob. 50PCh. 39 - Prob. 51PCh. 39 - Prob. 52PCh. 39 - Prob. 53PCh. 39 - Prob. 54PCh. 39 - Prob. 55PCh. 39 - Prob. 56PCh. 39 - Prob. 57PCh. 39 - Prob. 58PCh. 39 - Prob. 59PCh. 39 - Prob. 60PCh. 39 - Prob. 61PCh. 39 - Prob. 62PCh. 39 - Prob. 63PCh. 39 - Prob. 64PCh. 39 - A diatomic gas molcculc consistsof two atoms of...Ch. 39 - Prob. 66PCh. 39 - Prob. 67PCh. 39 - Prob. 68PCh. 39 - Prob. 69PCh. 39 - Prob. 70PCh. 39 - An old model of a hydrogen atom has the charge e...Ch. 39 - Prob. 72PCh. 39 - Prob. 73P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 0.062-nm photons are incident on stationary electrons. A scattered photon is observed at 134°. Find its wavelength, 2'= 6.61e-2 nm, and energy, E',= 18.8 kev. The kinetic energy of the recoiled electron is KE= 1.25 kev. What is the maximum kinetic energy of recoiled electrons exposed to these photons? KEm Emax= kev.arrow_forwardThe average threshold of dark-adapted (scotopic) vision is 4.00 x 10-11 W/m2 at a central wavelength of 500 nm. If light with this intensity and wavelength enters the eye and the pupil is open to its maximum diameter of 7.00 mm, how many photons per second enter the eye?arrow_forwardThe threshold of dark-adapted (scotopic) vision is 4.5 ✕ 10−11 W/m2 at a central wavelength of 500 nm. If light with this intensity and wavelength enters the eye when the pupil is open to its maximum diameter of 7.9 mm, how many photons per second enter the eye?arrow_forward
- An 80 W light source (eg a bulb) consumes predictably 80 W of electrical power. Assume that all of this energy (but about 5% is in the visible region) is converted to Light with a wavelength of 580 nm.a) Find the frequency of the emitted light.b) Calculate how many photons per second are emitted in the visible region.c) Is there a relationship between the frequency of the light and the number of photons emitted per second? Comment.arrow_forwardAn atom absorbs a photon of wavelength 375 nm and imme- diately emits another photon of wavelength 580 nm. What is the net energy absorbed by the atom in this process?arrow_forwardThe threshold of dark - adapted (scotopic) vision is 4.0 x 10-11 W/m2 at a central wavelength of 5.00 x 102 nm. If light with this intensity and wavelength enters the eye when the pupil is open to its maximum diameter of 8.5 mm, how many photons per second enter the eye?arrow_forward
- A visible (violet) emission spectral line for chromium (Cr) occurs at wavelength λ = 425.435 nm. A) What is the frequency (ν) of this light?(Give correct units and answer to six significant figures.) B) What is the magnitude of the energy change associated with the emission of one mole of photons of light with this wavelength?arrow_forwardA sodium lamp emits light at the power P = 100 W and at the wavelength = 593 nm, and the emission is uniformly in all directions. (a) At what rate are photons emitted by the lamp? (b) At what distance from the lamp will a totally absorbing screen absorb photons at the rate of 1.00 photon /cm²s? (c) What is the rate per square meter at which photons are intercepted by a screen at a distance of 2.40 m from the lamp? (a) Number (b) Number i MI (c) Number i Units Units Units <arrow_forwardQ11arrow_forward
- A watt is a unit of energy per unit time, and one watt (W) is equal to one joule per second (J⋅s−1). A 40.0 W incandescent lightbulb produces about 4.00% of its energy as visible light. Assuming that the light has an average wavelength of 510.0 nm, calculate how many such photons are emitted per second by a 40.0 W incandescent lightbulb.arrow_forwardI have a physocs question as follows : Photons of wavelength 140 nm are incident on a metal. The most energetic electrons ejected from the metal are bent into a circular arc of radius 1.08 cm by a magnetic field having a magnitude of 6.30 10-4 T. What is the work function of the metal (eV)?arrow_forwardA) Astronomers measure the peak wavelength of a nearby star to be 410 nm. What is the star's temperature? B) How much energy does a single photon of light have at this wavelength? C) An electron bound in an unknown metal requires 1.45E-19 ] of energy under the photoelectric effect to become free of the metal. How much kinetic energy would it have if struck by the photon froft part (b)? D) What is the final speed of the elctron from part (c)?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax