Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 39, Problem 69P
To determine
To explain:
The observation that the frequency of the second Lyman-series line is the sum of the frequencies of the first Lyman-series line and the first Balmer-series line.
Use the diagram to find some other valid combinations.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
From the energy-level diagram for hydrogen, explain the observation that the frequency of the second Lyman-series line is the sum of the frequencies of the first Lyman-series line and the first Balmer-series line.This is an example of the empirically discovered Ritz combination principle. Use the diagram to find some other valid combinations.
Consider the atomic spectra for the H-atom: the Lyman series emits UV photons, the Balmer series emits visible photons, the Paschen series emits IR photons, and the Brackett series emits far IR photons. What type of photons would you expect from the next series? Briefly explain.
1) The Lyman series of lines in the emission spectrum of hydrogen corresponds to transitions from various excited states to the n1 = 1 orbit. Calculate the wavelength (in nm) of the energy line (n = 11) in the Lyman series to five significant figures. (RH = 109677.57 cm-1). Think about where this is in the spectrum.
2) What is the wavelength, (in angstroms, A) of an electron (m = 9.11 X 10-31 kg) moving at 7.80 X 105 m/sec. (h= 6.626 X 10-34 Js)
Chapter 39 Solutions
Fundamentals of Physics Extended
Ch. 39 - Prob. 1QCh. 39 - Prob. 2QCh. 39 - Prob. 3QCh. 39 - Prob. 4QCh. 39 - Prob. 5QCh. 39 - Prob. 6QCh. 39 - Prob. 7QCh. 39 - Prob. 8QCh. 39 - Prob. 9QCh. 39 - Prob. 10Q
Ch. 39 - Prob. 11QCh. 39 - Prob. 12QCh. 39 - Prob. 13QCh. 39 - Prob. 14QCh. 39 - Prob. 15QCh. 39 - Prob. 1PCh. 39 - Prob. 2PCh. 39 - Prob. 3PCh. 39 - Prob. 4PCh. 39 - Prob. 5PCh. 39 - Prob. 6PCh. 39 - Prob. 7PCh. 39 - Prob. 8PCh. 39 - Prob. 9PCh. 39 - Prob. 10PCh. 39 - Prob. 11PCh. 39 - Prob. 12PCh. 39 - Prob. 13PCh. 39 - Prob. 14PCh. 39 - Prob. 15PCh. 39 - Prob. 16PCh. 39 - Prob. 17PCh. 39 - Prob. 18PCh. 39 - Prob. 19PCh. 39 - Prob. 20PCh. 39 - Prob. 21PCh. 39 - Prob. 22PCh. 39 - Prob. 23PCh. 39 - Prob. 24PCh. 39 - Prob. 25PCh. 39 - Prob. 26PCh. 39 - Prob. 27PCh. 39 - Prob. 28PCh. 39 - Prob. 29PCh. 39 - Prob. 30PCh. 39 - Prob. 31PCh. 39 - Prob. 32PCh. 39 - Prob. 33PCh. 39 - Prob. 34PCh. 39 - Prob. 35PCh. 39 - Prob. 36PCh. 39 - Prob. 37PCh. 39 - Prob. 38PCh. 39 - Prob. 39PCh. 39 - Prob. 40PCh. 39 - Prob. 41PCh. 39 - Prob. 42PCh. 39 - Prob. 43PCh. 39 - Prob. 44PCh. 39 - Prob. 45PCh. 39 - Prob. 46PCh. 39 - Prob. 47PCh. 39 - Prob. 48PCh. 39 - Prob. 49PCh. 39 - Prob. 50PCh. 39 - Prob. 51PCh. 39 - Prob. 52PCh. 39 - Prob. 53PCh. 39 - Prob. 54PCh. 39 - Prob. 55PCh. 39 - Prob. 56PCh. 39 - Prob. 57PCh. 39 - Prob. 58PCh. 39 - Prob. 59PCh. 39 - Prob. 60PCh. 39 - Prob. 61PCh. 39 - Prob. 62PCh. 39 - Prob. 63PCh. 39 - Prob. 64PCh. 39 - A diatomic gas molcculc consistsof two atoms of...Ch. 39 - Prob. 66PCh. 39 - Prob. 67PCh. 39 - Prob. 68PCh. 39 - Prob. 69PCh. 39 - Prob. 70PCh. 39 - An old model of a hydrogen atom has the charge e...Ch. 39 - Prob. 72PCh. 39 - Prob. 73P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In extreme-temperature environments, such as those existing in a solar corona, atoms may be ionized by undergoing collisions with other atoms. One example of such ionization in the solar corona is the presence of C5+ ions, detected in the Fraunhofer spectrum. (a) By what factor do the energies of the C5+ ion scale compare to the energy spectrum of a hydrogen atom? (b) What is the wavelength of the first line in the Paschen series of C5+ ? (c) In what part of the spectrum are these lines located?arrow_forward(a) What is the minimum value of l for a subshell that contains 11 electrons? (b) If this subshell is in the n = 5 shell, what is the spectroscopic notation for this atom?arrow_forward(a) What voltage must be applied to an X-ray tube to obtain 0.0100-fm-wavelength X-rays for use in exploring the details of nuclei? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?arrow_forward
- Explain the following a. Is there any effect of the mass of nucleus on the scattering angle in Rutherford experiment? b. How can we use the formulas of expectation values for energy and momentum to extract their values? Explain. c. Consider an electron moving in a circle of radius r (first level) about a proton, Determine the magnetic dipole moment of an electron. d. Is there any variation in probability density as a function of distance from the nucleus in hydrogen atom? Explain.arrow_forwardTutorial Week 15 1. Find the amount of energy needed in the transition of hydrogen electrons into higher orbits (total of three), absorbing photons which have wavelengths of (1) 1005 nm (2) 1282 nm and (3) 1875 nm. 2. Determine the longest and shortest wavelengths of the Lyman series. 3. Suppose the initial amount of Cesium-137 is 1.5 kg, find the amount of Cesium-137 remain after 1000 years.arrow_forwardPlease answer the question on JJ Thompson and Physics. NB: THIS is not a GRADED question.arrow_forward
- The following diagram shows the complete set of orbitals of a hypothetical atom. The yellow circle represents the nucleus. Point D represents a location beyond the orbitals of this particular atom. Which of the following statements about an electron transitioning among the labeled points is TRUE? с D An electron transitioning from orbital A to orbital B will emit or absorb light with a longer wavelength than an electron transitioning from orbital B to orbital A. O The energy difference between orbitals B and C is bigger than that between orbitals A and B. To transition to a point between orbital A and B, an electron would need to absorb less energy than the difference between the energies of orbital A and B. An electron transitioning from orbital B orbital C would absorb green light. To transition from orbital C to orbital B, an electron must emit light.arrow_forwardA doubly ionized lithium atom (Li++) is one that has had two of its three electrons removed. The energy levels of the remaining single-electron ion are closely related to those of the hydrogen atom. The nuclear charge for lithium is +3e instead of just +e. How are the energy levels related to those of hydrogen? How is the radius of the ion in the ground level related to that of the hydrogen atom? Explain.arrow_forwardIn hydrogen’s characteristic spectra, each series (Lyman, Balmer, etc) has a “series limit”, where the wavelengths at one end of the series tend to “bunch up”, approaching a single limiting value. part a: Is it at the short-wavelength or the long-wavelength end of the series that this series limit occurs? part b: What is it about hydrogen’s allowed energies that leads to this phenomenon?arrow_forward
- 1 For the Rutherford (Geiger and Marsden) experiment with 5.5 MeV alpha particles on a 1 um gold foil, and for the six angles (decades) between 10-5 and 10° rad, calculate the Rutherford differential cross section (DCS), dor/d2, (a) without and (b) with screening. Represent both results graphically and draw conclusions. Answer: The nonscreened DCS values vary between 1.7137x10-3 and 2.0273×10 23 cm? rad-' in the interval [10-5-1 rad]. The screening angle is 3.7 x 10-3 rad, and the corresponding screened DCS values vary between 9.3620 x 10-14 and 2.0273 x 10-23 cm² rad-'. The screening Xa cuts off the otherwise increasing DCS with decreasing angle, which remains practically constant below Xarrow_forwarda. Calculate the de Broglie wavelength of the electron in the n = 1, 2, and 3 states of the hydrogen atom. Use the information as shown.b. Show numerically that the circumference of the orbit for each of these stationary states is exactly equal to n de Broglie wavelengths.c. Sketch the de Broglie standing wave for the n = 3 orbit.arrow_forwardThe wave function for a Hydrogen atom, at time t = 0 is: = V(21,0,0) + 12,1,0) + v?[2, 1, 1) + v3 |2,1, –1). |亚) considering that the notation is n,l, mi). If spin and radioactive transitions are ignored. a) Calculate the expectation value. b) Calculate the wave function at arbitrary time t. c) What is the probability of finding the system in the state with I = 1 and m = 1, as a function of time? d) What is the probability of finding the electron at a distance of 10 ^ -10cm. of the proton? (at t = 0).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning