University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 38, Problem 38.22E
An electron and a positron are moving toward each other and each has speed 0.500c in the lab frame. (a) What is the kinetic energy of each particle? (b) The e+ and e− meet head-on and annihilate. What is the energy of each photon that is produced? (c) What is the wavelength of each photon? How does the wavelength compare to the photon wavelength when the initial kinetic energy of the e+ and e− is negligibly small (see Example 38.6)?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
It is stated in the text that special relativity must be used to calculate the de Broglie wavelength of electrons in an electron microscope. Let us discover how much of an effect relativity has. Consider an electron accelerated through a potential difference of 1.00 x 105 V.a. Using the Newtonian (nonrelativistic) expressions for kinetic energy and momentum, what is the electron’s de Broglie wavelength?b. The de Broglie wavelength is λ = h/p, but the momentum of a relativistic particle is not mv. Using the relativistic expressions for kinetic energy and momentum, what is the electron’s de Broglie wavelength?
Suppose a proton is moving at 1.25 % of the speed of light.
a)Calculate the wavelength, in meters, of a photon that has the same momentum as this proton. b) What is the energy of the photon, in megaelectron volts? c) What is the kinetic energy of the proton, in megaelectron volts?
Gamma rays (?-rays) are high-energy photons. In a certain nuclear reaction, a ?-ray of energy 0.836 MeV (million electronvolts) is produced. Compute the frequency of such a photon.
How do I enter 2.02*10^20 in the answer window?
Chapter 38 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 38.1 - Silicon films become better electrical conductors...Ch. 38.2 - Prob. 38.2TYUCh. 38.3 - Prob. 38.3TYUCh. 38.4 - Prob. 38.4TYUCh. 38 - Prob. 38.1DQCh. 38 - Prob. 38.2DQCh. 38 - Prob. 38.3DQCh. 38 - Prob. 38.4DQCh. 38 - Prob. 38.5DQCh. 38 - Prob. 38.6DQ
Ch. 38 - Prob. 38.7DQCh. 38 - Prob. 38.8DQCh. 38 - Prob. 38.9DQCh. 38 - Prob. 38.10DQCh. 38 - Prob. 38.11DQCh. 38 - Prob. 38.12DQCh. 38 - Prob. 38.13DQCh. 38 - Prob. 38.14DQCh. 38 - Prob. 38.15DQCh. 38 - Prob. 38.16DQCh. 38 - Prob. 38.17DQCh. 38 - Prob. 38.1ECh. 38 - Prob. 38.2ECh. 38 - Prob. 38.3ECh. 38 - Prob. 38.4ECh. 38 - Prob. 38.5ECh. 38 - Prob. 38.6ECh. 38 - Prob. 38.7ECh. 38 - Prob. 38.8ECh. 38 - Prob. 38.9ECh. 38 - Prob. 38.10ECh. 38 - Prob. 38.11ECh. 38 - Prob. 38.12ECh. 38 - Prob. 38.13ECh. 38 - Prob. 38.14ECh. 38 - Prob. 38.15ECh. 38 - Prob. 38.16ECh. 38 - Prob. 38.17ECh. 38 - Prob. 38.18ECh. 38 - Prob. 38.19ECh. 38 - Prob. 38.20ECh. 38 - Prob. 38.21ECh. 38 - An electron and a positron are moving toward each...Ch. 38 - Prob. 38.23ECh. 38 - Prob. 38.24ECh. 38 - Prob. 38.25ECh. 38 - Prob. 38.26PCh. 38 - Prob. 38.27PCh. 38 - Prob. 38.28PCh. 38 - Prob. 38.29PCh. 38 - Prob. 38.30PCh. 38 - Prob. 38.31PCh. 38 - Prob. 38.32PCh. 38 - Prob. 38.33PCh. 38 - Prob. 38.34PCh. 38 - Prob. 38.35PCh. 38 - Prob. 38.36PCh. 38 - Prob. 38.37PCh. 38 - Prob. 38.38PCh. 38 - Prob. 38.39PCh. 38 - Prob. 38.40CPCh. 38 - Prob. 38.41PPCh. 38 - Prob. 38.42PPCh. 38 - Prob. 38.43PPCh. 38 - Prob. 38.44PPCh. 38 - Prob. 38.45PP
Additional Science Textbook Solutions
Find more solutions based on key concepts
An unknown particle is measured to have a negative charge and a speed of 2.24 × 108 m/s. Its momentum is determ...
Physics for Scientists and Engineers with Modern Physics
Chuck Stone releases a ball near the top of a track and measures the balls speed as it rolls horizontally off t...
Conceptual Integrated Science
A hot rock ejected from a volcano's lava fountain cools from 1100C to 40.0C, and its entropy decreases by 950J/...
College Physics
In which extrasolar planet system(s) (A–D) is the planet closest to the star?
Lecture- Tutorials for Introductory Astronomy
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
What is metabolism, and what are the two basic metabolic needs of any organism? Explain the four metabolic clas...
Life in the Universe (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 900-W microwave generator in an oven generates energy quanta of frequency 2560 MHz. (a) How many energy quanta does it emit per second? (b) How many energy quanta must be absorbed by a pasta dish placed in the radiation cavity to increase its temperature by 45.0 K? Assume that the dish has a mass of 0.5 kg and that its specific heat is 0.9 kcal/kg • K. (c) Assume that all energy quanta emitted by the generator are absorbed by the pasta dish. How long must we wait until the dish in (b) is ready?arrow_forward(a) What is the uncertainty in the energy released in the decay of a due to its short lifetime? (b) What traction of the decay energy is this, noting that the decay mode is (so that all the mass is destroyed)?arrow_forwardIn a supercollider at CERN, protons are accelerated to velocities of 0.25c. What are their wavelengths at this speed? What are their kinetic energies? If a beam of protons were to gain its kinetic energy in only one pass through a potential difference, how high would this potential difference have to be? (Rest mass energy of a proton is E0=938 MeV).arrow_forward
- (a) What is the kinetic energy in MeV of a ray that is traveling at 0.998c? This gives some idea of how energetic a ray must be to travel at nearly the same speed as a ray. (b) What is the velocity of the ray relative to the ray?arrow_forwardAn electron in a box is in the ground state with energy 2.0 eV. (a) Find the width of the box. (b) How much energy is needed to excite the electron to its first excited state? (c) If the electron makes a transition from an excited state to the ground state with the simultaneous emission of 30.0-eV photon, find the quantum number of the excited state?arrow_forward(a) The lifetime of a highly unstable nucleus is 10-20. What is the smallest uncertainty in its decay energy? (b) Compare this with the rest energy of an electron.arrow_forward
- A 200-W heater emits a 1.5-m radiation. (a) What value of the energy quantum does it emit? (b) Assuming that the specific heat of a 4.0-kg body is 0.83kcaI/kg • K, how many of these photons must be absorbed by the body to increase its temperature by 2 K? (c) How long does the heating process in (b) take, assuming that all radiation emitted by the heater gets absorbed by the body?arrow_forward(a) Calculate the velocity of an electron that has a wavelength of 1.00 m. (b) Through what voltage must the electron be accelerated to have this velocity?arrow_forwardwhat is the speed of an electron that has the same momentum as a photon with a wavelength in vacuum of 488 nm? The mass of an electron is 9.11 × 10^–31 kg.arrow_forward
- Another theory of dark matter (there are many theories!) predicts that there is a particle in the dark sector that is similar to the photon but has a small nonzero mass, which we call the dark photon. The dark photon does not move at the speed of light, but slightly slower, at a speed that depends on the wavelength. If the mass of the dark photon is 10-15 eV/c², what is the wavelength of a dark photon that moves at a speed that is 99% the speed of light? 7arrow_forwardHelp Mearrow_forward4. An electron is accelerated into a cathode plate with a potential difference of 100,000 V. a) What is the shortest wavelength of electromagnetic energy that can be produced? b) What is the non-relativistic speed (m/s) of the electron the instant before the collision? c) What is the wavelength of the electron at its highest speed? d) What is the momentum of this photon? e) What type of photon is created (type of electromagnetic radiation)?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY