University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 38, Problem 38.24E
(a)
To determine
The minimum uncertainty in the vertical component of momentum.
(b)
To determine
The width of the central diffraction maximum.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The average energy of a photon in a pulsed laser beam is2.39 eV, with a minimum uncertainty of 0.0155 eV. Each pulse has anaverage of 5.00 * 10^12 photons. Find (a) the time duration of eachpulse, (b) the wavelength of the light, and (c) the energy per pulse in J.
The average energy of a photon in a pulsed laser beam is 2.39 eV, with a minimum uncertainty of 0.0155 eV. Each pulse has an average of 5.00 x 1012 photons. Find (a) the time duration of each pulse, (b) the wavelength of the light, and (c) the energy per pulse in J.
Weather radar systems emit radio waves in pulses. For a typical system the frequency used is 3.00 GHz (1 GHz = 109 Hz) and the minimum energy uncertainty of the radio photons is 5.50 * 10-29 J. Find (a) the time duration of each pulse, (b) the length of each pulse, (c) the energy of an average photon, and (d) the minimum frequency uncertainty.
Chapter 38 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 38.1 - Silicon films become better electrical conductors...Ch. 38.2 - Prob. 38.2TYUCh. 38.3 - Prob. 38.3TYUCh. 38.4 - Prob. 38.4TYUCh. 38 - Prob. 38.1DQCh. 38 - Prob. 38.2DQCh. 38 - Prob. 38.3DQCh. 38 - Prob. 38.4DQCh. 38 - Prob. 38.5DQCh. 38 - Prob. 38.6DQ
Ch. 38 - Prob. 38.7DQCh. 38 - Prob. 38.8DQCh. 38 - Prob. 38.9DQCh. 38 - Prob. 38.10DQCh. 38 - Prob. 38.11DQCh. 38 - Prob. 38.12DQCh. 38 - Prob. 38.13DQCh. 38 - Prob. 38.14DQCh. 38 - Prob. 38.15DQCh. 38 - Prob. 38.16DQCh. 38 - Prob. 38.17DQCh. 38 - Prob. 38.1ECh. 38 - Prob. 38.2ECh. 38 - Prob. 38.3ECh. 38 - Prob. 38.4ECh. 38 - Prob. 38.5ECh. 38 - Prob. 38.6ECh. 38 - Prob. 38.7ECh. 38 - Prob. 38.8ECh. 38 - Prob. 38.9ECh. 38 - Prob. 38.10ECh. 38 - Prob. 38.11ECh. 38 - Prob. 38.12ECh. 38 - Prob. 38.13ECh. 38 - Prob. 38.14ECh. 38 - Prob. 38.15ECh. 38 - Prob. 38.16ECh. 38 - Prob. 38.17ECh. 38 - Prob. 38.18ECh. 38 - Prob. 38.19ECh. 38 - Prob. 38.20ECh. 38 - Prob. 38.21ECh. 38 - An electron and a positron are moving toward each...Ch. 38 - Prob. 38.23ECh. 38 - Prob. 38.24ECh. 38 - Prob. 38.25ECh. 38 - Prob. 38.26PCh. 38 - Prob. 38.27PCh. 38 - Prob. 38.28PCh. 38 - Prob. 38.29PCh. 38 - Prob. 38.30PCh. 38 - Prob. 38.31PCh. 38 - Prob. 38.32PCh. 38 - Prob. 38.33PCh. 38 - Prob. 38.34PCh. 38 - Prob. 38.35PCh. 38 - Prob. 38.36PCh. 38 - Prob. 38.37PCh. 38 - Prob. 38.38PCh. 38 - Prob. 38.39PCh. 38 - Prob. 38.40CPCh. 38 - Prob. 38.41PPCh. 38 - Prob. 38.42PPCh. 38 - Prob. 38.43PPCh. 38 - Prob. 38.44PPCh. 38 - Prob. 38.45PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If STM is to detect surface features with local heights of about 0.0200 nm, what percent change in tunneling-electron current must the STM electronics be able to detect? Assume that the tunneling-electron current has characteristics given in the preceding problem.arrow_forwardA beam of electrons, each with the same ki- netic energy, illuminates a pair of slits sepa rated by a distance of 63 nm. The beam forms bright and dark fringes on a screen located a distance 1.1 m beyond the two slits. The arrangement is otherwise identical to that used in the optical two-slit interference experiment. The bright fringes are found to be separated by a distance of 0.1 mm. What is the kinetic energy of the elec- trons in the beam? Planck’s constant is 6.63 × 10^−34 J · s. Answer in units of keV.arrow_forwardSuppose the position of a chlorine ion in a membrane is measured to an accuracy of 0.75 μm. a) What is its minimum uncertainty in velocity in meters per second, given its mass is 5.86 × 10-26 kg? b) If the ion is measured to have a velocity of 8.9 × 103 m/s, what is the uncertainty in its kinetic energy in electron volts?arrow_forward
- What double-slit separation would produce a first-order maximum at 3.00º for 25.0-keV x rays? The small answer indicates that the wave character of x rays is best determined by having them interact with very small objects such as atoms and molecules.arrow_forwardProblem 3. A Fabry-Perot laser cavity is made of two identical mirrors. Each miror has an optical power reflectance R=0.999. The distance between the two mirrors is d=10 cm. The laser cavity is filled a gas material as the gain medium with an index of refraction n=1.05. (a) What is the photon life time of this laser cavity? (b) In order to make a laser using this cavity, you need to pump the gain medium to have a gain for compensating the losses at two mirrors. What is the threshold gain coefficient for this laser?arrow_forwardA beam of 40 eV electrons traveling in the+x-directionpasses through a slit that is parallel to the y-axis and5.0 mm wide. The diffraction pattern is recorded on a screen 2.5 mfrom the slit. (a) What is the de Broglie wavelength of the electrons?(b) How much time does it take the electrons to travel from the slit tothe screen? (c) Use the width of the central diffraction pattern to calculatethe uncertainty in the y-component of momentum of an electronjust after it has passed through the slit. (d) Use the result of part(c) and the Heisenberg uncertainty principle [(Eq. 39.29) for y] toestimate the minimum uncertainty in the y-coordinate of an electronjust after it has passed through the slit. Compare your result to thewidth of the slit.arrow_forward
- In the 1920s Clinton Davisson and Lester Germer accidentally observed diffraction when electrons with 54 eV of energy were scattered off crystalline nickel. The diffraction peak occurred when the angle between the incident beam and the scattered beam was 50°. (a) What is the corresponding angle u relevant for Eq.? (b) The planes in crystalline nickel are separated by 0.091 nm, as determined by x-ray scattering experiments. According to the Bragg condition, what wavelength do the electrons in these experiments have? (c) Given the mass of an electron as 9.11 x 10-31 kg, what is the corresponding classical speed vcl of the diffracted electrons? (d) Assuming the electrons correspond to a wave with speed vcl and wavelength λ, what is the frequency f of the diffracted waves? (e) Quantum mechanics postulates that the energy E and the frequency f of a particle are related by E = hf, where h is known as Planck’s constant. Estimate h from these observations. (f) Our analysis has a small flaw:…arrow_forwardA laser beam of 0.005 W with photon energy of 1.6 eV is incident on a GaAs PIN phot-detector. The detector i-region width is 6 um, its cross sectional area is A= 0.8 cm, and its absorption coefficient at the incident photon energy is aGaAs =1x 10 cm. If 20% of the incident photon flux is reflected back at the detector surface, calculate the detector photo-current I: Select one: O A IL = 0.00230 A O B. IL = 9.02e-4 A O C. IL = 8.00e-5 A O D. IL = 8.00e-4 A OE. IL = 0.00130 A Tarh G0 ofarrow_forward(a) The uncertainty in the y-component of a proton’s position is 2.0 * 10-12 m. What is the minimum uncertainty in a simultane- ous measurement of the y-component of the proton’s velocity? (b) The uncertainty in the z-component of an electron’s velocity is 0.250 m/s. What is the minimum uncertainty in a simultaneous measurement of the z-coordinate of the electron?arrow_forward
- 1) A laser produces light of wavelength 525 nmnm in an ultrashort pulse. What is the minimum duration of the pulse if the minimum uncertainty in the energy of the photons is 1.0%%? Express your answer with the appropriate units.arrow_forwardRayleigh’s criterion is used to determine when two objects are barely resolved by a lens of diameter d. The angular separation must be greater than θR where θR = 1.22 λ/d In order to resolve two objects 4000 nm apart at a distance of 20 cm with a lens of diameter 5 cm, what energy (a) photons or (b) electrons should be used? Is this consistent with the uncertainty principle?arrow_forwardAn electron microscope passes 1.00-pm-wavelength electrons through a circular aperture 2.00 µm in diameter. What is the angle between two just-resolvable point sources for this microscope?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax