University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 38, Problem 38.43PP
To determine
The loss of energy of photon.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The high-energy photons can undergo Compton scattering off electrons in the tumor. The energy imparted by a photon is a maximum when the photon scatters straight back from the electron. In this process, what is the maximum energy that a photon with the energy described in the passage can give to an electron? (a) 3.8 MeV; (b) 2.0 MeV; (c) 0.40 MeV; (d) 0.23 MeV.
15.(a)What is the frequency of an x-ray photon whose momentum is 1.1x 1023 kg m/s?
(b) How much energy must a photon have if it is to have the momentum of a 10-MeV
proton?
Help Me
Chapter 38 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 38.1 - Silicon films become better electrical conductors...Ch. 38.2 - Prob. 38.2TYUCh. 38.3 - Prob. 38.3TYUCh. 38.4 - Prob. 38.4TYUCh. 38 - Prob. 38.1DQCh. 38 - Prob. 38.2DQCh. 38 - Prob. 38.3DQCh. 38 - Prob. 38.4DQCh. 38 - Prob. 38.5DQCh. 38 - Prob. 38.6DQ
Ch. 38 - Prob. 38.7DQCh. 38 - Prob. 38.8DQCh. 38 - Prob. 38.9DQCh. 38 - Prob. 38.10DQCh. 38 - Prob. 38.11DQCh. 38 - Prob. 38.12DQCh. 38 - Prob. 38.13DQCh. 38 - Prob. 38.14DQCh. 38 - Prob. 38.15DQCh. 38 - Prob. 38.16DQCh. 38 - Prob. 38.17DQCh. 38 - Prob. 38.1ECh. 38 - Prob. 38.2ECh. 38 - Prob. 38.3ECh. 38 - Prob. 38.4ECh. 38 - Prob. 38.5ECh. 38 - Prob. 38.6ECh. 38 - Prob. 38.7ECh. 38 - Prob. 38.8ECh. 38 - Prob. 38.9ECh. 38 - Prob. 38.10ECh. 38 - Prob. 38.11ECh. 38 - Prob. 38.12ECh. 38 - Prob. 38.13ECh. 38 - Prob. 38.14ECh. 38 - Prob. 38.15ECh. 38 - Prob. 38.16ECh. 38 - Prob. 38.17ECh. 38 - Prob. 38.18ECh. 38 - Prob. 38.19ECh. 38 - Prob. 38.20ECh. 38 - Prob. 38.21ECh. 38 - An electron and a positron are moving toward each...Ch. 38 - Prob. 38.23ECh. 38 - Prob. 38.24ECh. 38 - Prob. 38.25ECh. 38 - Prob. 38.26PCh. 38 - Prob. 38.27PCh. 38 - Prob. 38.28PCh. 38 - Prob. 38.29PCh. 38 - Prob. 38.30PCh. 38 - Prob. 38.31PCh. 38 - Prob. 38.32PCh. 38 - Prob. 38.33PCh. 38 - Prob. 38.34PCh. 38 - Prob. 38.35PCh. 38 - Prob. 38.36PCh. 38 - Prob. 38.37PCh. 38 - Prob. 38.38PCh. 38 - Prob. 38.39PCh. 38 - Prob. 38.40CPCh. 38 - Prob. 38.41PPCh. 38 - Prob. 38.42PPCh. 38 - Prob. 38.43PPCh. 38 - Prob. 38.44PPCh. 38 - Prob. 38.45PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) Calculate the wavelength of a photon that has the same momentum as a proton moving at 1.00% of the speed of light. (b) What is the energy of the photon in MeV? (c) What is the kinetic energy of the proton in MeV?arrow_forwardIn a Compton scattering experiment, an x-ray photon scatters through an angle of 15.0° from a free electron that is initially at rest. The electron recoils with a speed of 2,200 km/s. (a) Calculate the wavelength of the incident photon. nm (b) Calculate the angle through which the electron scatters. Oarrow_forwardSuppose a linear accelerator (linac) creates a X-ray beam where every individual photon has an energy of 19 MeV. If 3x1010 photons are produced over 90x10-15 s, as measured through an area of 3.1 m², determine the intensity of the X-ray beam. I = B W/m²arrow_forward
- K 1...arrow_forwardA photon with wavelength X scatters off an electron at rest, at an angle with the incident direction. The Compton wavelength of the electron Ac = 0.0024 nm. a) For λ = 0.0006 nm and 0 = 53 degrees, find the wavelength X' of the scattered photon in nanometres. b) Obtain a formula for the energy of the electron Ee after collision, in terms of the universal constants h, c and the variables X, X' and Ac. The answer must be expressed in terms of these variables only. (Please enter an algebraic expression using latex format; do not input any numerical values) c) Using the energy conservation condition, find the value of the electron energy Ee after scattering in units of keV. d) Write an algebraic expression for the electron's momentum pe in terms of its energy Ee, its mass me and the speed of light c. e) What is the de Broglie wavelength of the scattered electron ? Express your answer in terms of Ee, me, and X and c. f) Find the value of the de Broglie wavelength of the scattered electron…arrow_forwardWhat is the wavelength of (a) a photon with energy 1.00 eV, (b) an electron with energy 1.00 eV, (c) a photon of energy 1.00 GeV, and (d) an electron with energy 1.00 GeV?arrow_forward
- An alpha particle (m = 6.64 × 10−27 kg) emitted in the radioactive decay of Uranium-238 has an energy of 4.20 MeV. What is its de Broglie wavelength?arrow_forwardAn electron and a positron, initially far apart, move toward each other with the same speed. They collide head-on, annihilating each other and producing two photons. Find the energies, wavelengths, and frequencies of the photons if the initial kinetic energies of the electron and positron are (a) both negligible and (b) both 5.000 MeV. The rest energy of an electron or a positron is 0.511 MeV.arrow_forward(a) In MeV/c, what is the magnitude of the momentum associated with a photon having an energy equal to the electron rest energy? What are the (b) wavelength and (c) frequency of the corresponding radiation?arrow_forward
- An electron has a non-relativistic speed of v=1.5 x 105 m/s. Determine: a) Its De Broglie wave length, its kinetic energy and the rest energy of the electron in joules and electron volts b) What is the speed of the electron if the relativistic kinetic energy is equal to the rest energy? c) The momentum of the electron at a speed of 0.80c and the De Broglie wavelength for an electron with a speed of 0.80c.arrow_forwardNuclear fusion reactions at the center of the sun produce gamma-ray photons with energies of about 1 MeV (106 eV). By contrast, what we see emanating from the sun’s surface are visiblelight photons with wavelengths of about 500 nm. A simple model that explains this difference in wavelength is that a photon undergoes Compton scattering many times—in fact, about 1026 times, as suggested by models of the solar interior—as it travels from the center of the sun to its surface. (a) Estimate the increase in wavelength of a photon in an average Compton-scattering event. (b) Find the angle in degrees through which the photon is scattered in the scattering event described in part (a). (Hint: A useful approximation is cosf ≈ 1 - f2/2, which is valid for f V1. Note that f is in radians in this expression.) (c) It is estimated that a photon takes about 106 years to travel from the core to the surface of the sun. Find the average distance that light can travel within the interior of the sun without…arrow_forward(a) Calculate the wavelength (in m) of a photon that has the same momentum as a proton moving at 1.21% of the speed of light. m (b) What is the energy of the photon in MeV? MeV (c) What is the kinetic energy of the proton in MeV? MeVarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College