University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 38.2, Problem 38.2TYU
To determine
What will happen if the numbers of electrons that are emitted from the cathode per second increases while keeping the potential difference
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
It is possible that a muon be captured by a proton to form a muonic atom. A muon is identic to an electron, except when your mass, which is m = 105.7 MeV/c^2. What ia the smallest wave length for a Lyman series for this atom? Give your answer in pm.
The x-ray spectrum is for 35.0 keV electrons striking a molybdenum (Z= 42) target. If you substitute a silver (Z = 47) target for the molybdenum target, will (a) lmin, (b) the wavelength for the Ka line, and (c) the wavelength for the Kb line increase, decrease, or remain unchanged?
I need the answer as soon as possible
Chapter 38 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 38.1 - Silicon films become better electrical conductors...Ch. 38.2 - Prob. 38.2TYUCh. 38.3 - Prob. 38.3TYUCh. 38.4 - Prob. 38.4TYUCh. 38 - Prob. 38.1DQCh. 38 - Prob. 38.2DQCh. 38 - Prob. 38.3DQCh. 38 - Prob. 38.4DQCh. 38 - Prob. 38.5DQCh. 38 - Prob. 38.6DQ
Ch. 38 - Prob. 38.7DQCh. 38 - Prob. 38.8DQCh. 38 - Prob. 38.9DQCh. 38 - Prob. 38.10DQCh. 38 - Prob. 38.11DQCh. 38 - Prob. 38.12DQCh. 38 - Prob. 38.13DQCh. 38 - Prob. 38.14DQCh. 38 - Prob. 38.15DQCh. 38 - Prob. 38.16DQCh. 38 - Prob. 38.17DQCh. 38 - Prob. 38.1ECh. 38 - Prob. 38.2ECh. 38 - Prob. 38.3ECh. 38 - Prob. 38.4ECh. 38 - Prob. 38.5ECh. 38 - Prob. 38.6ECh. 38 - Prob. 38.7ECh. 38 - Prob. 38.8ECh. 38 - Prob. 38.9ECh. 38 - Prob. 38.10ECh. 38 - Prob. 38.11ECh. 38 - Prob. 38.12ECh. 38 - Prob. 38.13ECh. 38 - Prob. 38.14ECh. 38 - Prob. 38.15ECh. 38 - Prob. 38.16ECh. 38 - Prob. 38.17ECh. 38 - Prob. 38.18ECh. 38 - Prob. 38.19ECh. 38 - Prob. 38.20ECh. 38 - Prob. 38.21ECh. 38 - An electron and a positron are moving toward each...Ch. 38 - Prob. 38.23ECh. 38 - Prob. 38.24ECh. 38 - Prob. 38.25ECh. 38 - Prob. 38.26PCh. 38 - Prob. 38.27PCh. 38 - Prob. 38.28PCh. 38 - Prob. 38.29PCh. 38 - Prob. 38.30PCh. 38 - Prob. 38.31PCh. 38 - Prob. 38.32PCh. 38 - Prob. 38.33PCh. 38 - Prob. 38.34PCh. 38 - Prob. 38.35PCh. 38 - Prob. 38.36PCh. 38 - Prob. 38.37PCh. 38 - Prob. 38.38PCh. 38 - Prob. 38.39PCh. 38 - Prob. 38.40CPCh. 38 - Prob. 38.41PPCh. 38 - Prob. 38.42PPCh. 38 - Prob. 38.43PPCh. 38 - Prob. 38.44PPCh. 38 - Prob. 38.45PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Light of wavelength 203 nm shines on a metal surface. 3.98 eV is required to eject an electron. What is the kinetic energy of (a) the fastest and (b) the slowest ejected electrons? (c) What is the stopping potential for this situation? (d) What is the cutoff wavelength for this metal? (a) Number i Units (b) Number i Units (c) Number i Units (d) Number i Unitsarrow_forward(a) A proton has a slightly smaller mass than a neutron. Compared to the neutron described in Example 39.2, would a proton of the same wavelength have (i) more kinetic energy; (ii) less kinetic energy; or (iii) the same kinetic energy? (b) Example 39.1 shows that to give electrons a wavelength of 1.7 * 10^-10 m, they must be accelerated from rest through a voltage of 54 V and so acquire a kinetic energy of 54 eV. Does a photon of this same energy also have a wavelength of 1.7 * 10^-10 m ?arrow_forwardThree isotopes of hydrogen occur in nature; ordinary hydrogen, deuterium, and tritium. Their nuclei consist of, respectively, 1 proton, 1 proton and 1 neutron (deuteron), and 1 proton and 2 neutrons (triton). (a) Determine Rydberg constants for deuterium and tritium. (b) Determine the wavelength difference between the Balmer α lines of deuterium and tritium. (c) Determine the wavelength difference between the Balmer α lines of hydrogen and tritium. Note: The difference in this case would be caused by the nuclear mass. In deriving the Bohr atom, the first order of approximation was to assume that the nucleus doesn't move at all. The correction to this can be done by replacing the mass of the electron with the reduced mass of the electron-nucleus system, where, as you studied in mechanics, the reduced mass is given by μ=m1m2/(m1+m2). Additionally, the Balmer series is the one that terminates in the n=2 level with the α line corresponding to the n=3→n=2 transition.arrow_forward
- X-ray is produced by bombarding a tungsten target with high energy electrons accelerated by 8.8 kV of voltage. Use σ = 1 for the electron transition down to K shell (n = 1) and σ = 7.4 for the electron transition down to L shell (n = 2) for characteristic X-ray. What is energy of the characteristic X-ray of the tungsten (Z = 74) target when the electron in n = 4 orbital moves down to n = 1? What is the energy the characteristic X-ray of the tungsten (Z = 74) target when the electron in n = 3 orbital moves down to n = 2?arrow_forwardIn the figure, thex rays shown are produced when 35.0 keV electrons strike a molybdenum target. If the accelerating potential is maintained at this value but a different target is used instead, what values of (a) Amin (b) the wavelength of the K, line and (c) the wavelength of the Kg line result? The K, L, and M x-ray levels for the new target are 22.74, 4.68, and 0.82 keV. Kg Continuous spectrum Ks Amin 30 40 50 60 70 80 90 Wavelength (pm) (a) Number i Units (b) Number i Units (c) Number i Units Relative intensityarrow_forwardThe energies for an electron in the K, L, and M shells of the tungsten atom are -69,500 eV, -12,000 eV, and -2200 eV, respectively. Calculate the wavelengths of the Ka and Kb x rays of tungsten.arrow_forward
- An ordinary neon light fixture like those used in advertising signs emits red light of wavelength 632.8 nm. Neon atoms are also used in a helium–neon laser (a type of gas laser). The light emitted by a neon light fixture is (i) spontaneous emission; (ii) stimulated emission; (iii) both spontaneous and stimulated emission.arrow_forwardcorrect Option is (d), explain whyarrow_forwardWhat minimum accelerating voltage is required to produce an x - ray with a wavelength of 70.0 pm?arrow_forward
- In x-ray production, electrons are accelerated through a high voltage AV and then decelerated by striking a target. Show that the shortest wavelength of an x-ray that can be produced is 1240 nm · V A min = Δνarrow_forwardAn x-ray tube has an anode made of iridium (atomic number 77). Assume that each iridium atom has only one electron in its lowest orbit, i.e. the other 76 electrons have been removed. a) What are the energies of the first two characteristic x-rays that will be emitted by this x-ray tube? b) If the voltage between the filament and the iridium anode is 30,000V, will one observe these x-rays? Wht or why not? c) What is the shortest wavelength of the x-rays that can be observed with a potential difference of 30,000 v? d) Suppose an x-ray photon whose energy is 20,000V is emitted from the anode and Compton scatters from an electron in a person, giving up 20.0% of its energy to the electron. At what angle to its incident direction will the photon emerge, i.e. find (theta) in the diagramarrow_forwardWhat minimum accelerating voltage would be required to produce an x-ray with a wavelength of 70.0 pm?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning