University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 38.4, Problem 38.4TYU
To determine
Which of the angle is most likely to deflect through the slit of width a.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A hydrogen atom on the surface of the sun radiates a photon with wavelength 1800 nm.
The sun has a radius, Tsun = 6.96 × 108 m, and a mass, Msun = 1.99 × 10³⁰ kg.
(a) Calculate the change in wavelength when the photon is observed a long way -
effectively at an infinite distance from the sun (or any other massive object).
(b) How fast and in what direction would the observer have to move in order to cancel
this change in wavelength?
X-ray photons of wavelength 0.0248 nm are incident on a target and the Compton-scattered photons are observed at 80.0° above the photons' incident line of travel. [Use relativistic units for this problem!](a) What is the momentum of the incident photons? eV/c(b) What is the momentum (magnitude and angle) of the scattered electrons? eV/c°magnitude=61802.35
angel=?
1. a) What are the energy and momentum of a photon of red light of
wavelength 650 nm? (b) What is the wavelength of a photon of energy 2.40
eV?
Chapter 38 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 38.1 - Silicon films become better electrical conductors...Ch. 38.2 - Prob. 38.2TYUCh. 38.3 - Prob. 38.3TYUCh. 38.4 - Prob. 38.4TYUCh. 38 - Prob. 38.1DQCh. 38 - Prob. 38.2DQCh. 38 - Prob. 38.3DQCh. 38 - Prob. 38.4DQCh. 38 - Prob. 38.5DQCh. 38 - Prob. 38.6DQ
Ch. 38 - Prob. 38.7DQCh. 38 - Prob. 38.8DQCh. 38 - Prob. 38.9DQCh. 38 - Prob. 38.10DQCh. 38 - Prob. 38.11DQCh. 38 - Prob. 38.12DQCh. 38 - Prob. 38.13DQCh. 38 - Prob. 38.14DQCh. 38 - Prob. 38.15DQCh. 38 - Prob. 38.16DQCh. 38 - Prob. 38.17DQCh. 38 - Prob. 38.1ECh. 38 - Prob. 38.2ECh. 38 - Prob. 38.3ECh. 38 - Prob. 38.4ECh. 38 - Prob. 38.5ECh. 38 - Prob. 38.6ECh. 38 - Prob. 38.7ECh. 38 - Prob. 38.8ECh. 38 - Prob. 38.9ECh. 38 - Prob. 38.10ECh. 38 - Prob. 38.11ECh. 38 - Prob. 38.12ECh. 38 - Prob. 38.13ECh. 38 - Prob. 38.14ECh. 38 - Prob. 38.15ECh. 38 - Prob. 38.16ECh. 38 - Prob. 38.17ECh. 38 - Prob. 38.18ECh. 38 - Prob. 38.19ECh. 38 - Prob. 38.20ECh. 38 - Prob. 38.21ECh. 38 - An electron and a positron are moving toward each...Ch. 38 - Prob. 38.23ECh. 38 - Prob. 38.24ECh. 38 - Prob. 38.25ECh. 38 - Prob. 38.26PCh. 38 - Prob. 38.27PCh. 38 - Prob. 38.28PCh. 38 - Prob. 38.29PCh. 38 - Prob. 38.30PCh. 38 - Prob. 38.31PCh. 38 - Prob. 38.32PCh. 38 - Prob. 38.33PCh. 38 - Prob. 38.34PCh. 38 - Prob. 38.35PCh. 38 - Prob. 38.36PCh. 38 - Prob. 38.37PCh. 38 - Prob. 38.38PCh. 38 - Prob. 38.39PCh. 38 - Prob. 38.40CPCh. 38 - Prob. 38.41PPCh. 38 - Prob. 38.42PPCh. 38 - Prob. 38.43PPCh. 38 - Prob. 38.44PPCh. 38 - Prob. 38.45PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- X-ray photons of wavelength 0.0248 nm are incident on a target and the Compton-scattered photons are observed at 80.0° above the photons' incident line of travel. [Use relativistic units for this problem!] (a) What is the wavelength of the scattered photons? nm (b) What is the momentum of the incident photons? eV/c What is the momentum of the scattered photons? eV/c (c) What is the kinetic energy of the scattered electrons? eV (d) What is the momentum (magnitude and angle) of the scattered electrons? eV/carrow_forwardA) After a 0.790 nm x-ray photon scatters from a free electron, the electron recoils with a speed equal to 1.59E+6 m/s. What was the Compton shift in the photon's wavelength? B) Through what angle was the photon scattered?arrow_forwardA photon having wavelength l scatters off a free electron at A (as shown), producing a second photon having wavelength λ'. This photon then scatters off another free electron at B, producing a third photon having wavelength λ''and moving in a direction directly opposite the original photon as shown in the figure. Determine the value of Δλ = λ'' -λ.arrow_forward
- In a photoelectric effect experiment, it is found that no current flows unless the incident light has a wavelength shorter than 359 nm nm. What stopping potential will be needed to halt the current if light of 225 nm falls on the surface? Express your answer with the appropriate units. μA 2.249 V Vo =arrow_forwardA pulsar is a rapidly spinning remnant of a supernova. It rotates on its axis, sweeping hydrogen along with it so that hydrogen on one side moves toward us as fast as 50.0 km/s, while that on the other side moves away as fast as 50.0 km/s. This means that the EM radiation we receive will be Dopplershifted over a range of ±50.0 km/s . What range of wavelengths will we observe for the 91.20-nm line in the Lyman series of hydrogen? (Such line broadening is observed and actually provides part of the evidence for rapid rotation.)arrow_forwardGive the rest mass (in kg) of a photon with wavelength 648.0 nm.arrow_forward
- Fresh out of university you've been hired to do some photoelectron spectroscopy. You have a lamp that outputs an unknown wavelength of light. When the light is incident on a metal with a work function of 6.31 eV, you observe a stopping voltage equal to 4.21 V. What is the wavelength of the light? (unit in nm).arrow_forwardThe minimum wavelength of electromagnetic radiation that is capable of removing electrons from the surface of barium metal is 693 nm.i. Calculate the work function for barium metal in kilojoules per mole of electrons ejected. If a light source with a frequency of 3.75x10^14 s‒1 is directed at the surface of barium metal, what will be the maximum kinetic energy of the ejected electrons?arrow_forward19). To get a de Broglie wave that is visible to human eyes (size-wise, not visibility-wise, so A > 0.1 mm), of an particle, what particle should it be and what is the greatest speed it can be moving? Table 33.2 may be helpful.arrow_forward
- In developing night-vision equipment, you need to measure the work function for a metal surface, so you perform a photoelectric-effect experiment. You measure the stopping potential V0 as a function of the wavelength l of the light that is incident on the surface. You get the results in the table. In your analysis, you use c = 2.998 x 108m/s and e = 1.602 x 10-19 C, which are values obtained in other experiments. (a) Select a way to plot your results so that the data points fall close to a straight line. Using that plot, find the slope and y-intercept of the best-fit straight line to the data. (b) Use the results of part (a) to calculate Planck’s constant h (as a test of your data) and the work function (in eV) of the surface. (c) What is the longest wavelength of light that will produce photoelectrons from this surface? (d) What wavelength of light is required to produce photoelectrons with kinetic energy 10.0 eV?arrow_forwardf a photon of wavelength 0.04250 nm strikes a free electron and is scattered at an angle of 35.0° from its original direction, find (a) the change in the wavelength of this photon; (b) the wavelength of the scattered light; (c) the change in energy of the photon (is it a loss or a gain?); (d) the energy gained by the electronarrow_forwardCan you please help with the following question? Thanks!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning