University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 38, Problem 38.16DQ
To determine
The things wrong with considering the photon to be riding up and down on the crests and troughs of the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Suppose you need to image the structure of a virus with a diameter of 50 nm. For a sharp image, the wavelength of the probing wave must be 5.0 nm or less. We have seen that, for imaging such small objects, this short wavelength is obtained by using an electron beam in an electron microscope. Why don’t we simply use short-wavelength electromagnetic waves? There’s a problem with this approach: As the wavelength gets shorter, the energy of a photon of light gets greater and could damage or destroy the object being studied. Let’s compare the energy of a photon and an electron that can provide the same resolution.
For the electron with a de broglie wavelength of 3.5 nm, what is the kinetic energy (in eV)?
Suppose you need to image the structure of a virus with a diameter of 50 nm. For a sharp image, the wavelength of the probing wave must be 5.0 nm or less. We have seen that, for imaging such small objects, this short wavelength is obtained by using an electron beam in an electron microscope. Why don’t we simply use short-wavelength electromagnetic waves? There’s a problem with this approach: As the wavelength gets shorter, the energy of a photon of light gets greater and could damage or destroy the object being studied. Let’s compare the energy of a photon and an electron that can provide the same resolution.a. For light of wavelength 5.0 nm, what is the energy (in eV) of a single photon? In what part of the electromagnetic spectrum is this?b. For an electron with a de Broglie wavelength of 5.0 nm, what is the kinetic energy (in eV)?
What is the energy (in eV) of the following photons?
A 450-nm photon of blue light?
Chapter 38 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 38.1 - Silicon films become better electrical conductors...Ch. 38.2 - Prob. 38.2TYUCh. 38.3 - Prob. 38.3TYUCh. 38.4 - Prob. 38.4TYUCh. 38 - Prob. 38.1DQCh. 38 - Prob. 38.2DQCh. 38 - Prob. 38.3DQCh. 38 - Prob. 38.4DQCh. 38 - Prob. 38.5DQCh. 38 - Prob. 38.6DQ
Ch. 38 - Prob. 38.7DQCh. 38 - Prob. 38.8DQCh. 38 - Prob. 38.9DQCh. 38 - Prob. 38.10DQCh. 38 - Prob. 38.11DQCh. 38 - Prob. 38.12DQCh. 38 - Prob. 38.13DQCh. 38 - Prob. 38.14DQCh. 38 - Prob. 38.15DQCh. 38 - Prob. 38.16DQCh. 38 - Prob. 38.17DQCh. 38 - Prob. 38.1ECh. 38 - Prob. 38.2ECh. 38 - Prob. 38.3ECh. 38 - Prob. 38.4ECh. 38 - Prob. 38.5ECh. 38 - Prob. 38.6ECh. 38 - Prob. 38.7ECh. 38 - Prob. 38.8ECh. 38 - Prob. 38.9ECh. 38 - Prob. 38.10ECh. 38 - Prob. 38.11ECh. 38 - Prob. 38.12ECh. 38 - Prob. 38.13ECh. 38 - Prob. 38.14ECh. 38 - Prob. 38.15ECh. 38 - Prob. 38.16ECh. 38 - Prob. 38.17ECh. 38 - Prob. 38.18ECh. 38 - Prob. 38.19ECh. 38 - Prob. 38.20ECh. 38 - Prob. 38.21ECh. 38 - An electron and a positron are moving toward each...Ch. 38 - Prob. 38.23ECh. 38 - Prob. 38.24ECh. 38 - Prob. 38.25ECh. 38 - Prob. 38.26PCh. 38 - Prob. 38.27PCh. 38 - Prob. 38.28PCh. 38 - Prob. 38.29PCh. 38 - Prob. 38.30PCh. 38 - Prob. 38.31PCh. 38 - Prob. 38.32PCh. 38 - Prob. 38.33PCh. 38 - Prob. 38.34PCh. 38 - Prob. 38.35PCh. 38 - Prob. 38.36PCh. 38 - Prob. 38.37PCh. 38 - Prob. 38.38PCh. 38 - Prob. 38.39PCh. 38 - Prob. 38.40CPCh. 38 - Prob. 38.41PPCh. 38 - Prob. 38.42PPCh. 38 - Prob. 38.43PPCh. 38 - Prob. 38.44PPCh. 38 - Prob. 38.45PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Your answer is partially correct. A spectral emission line is electromagnetic radiation that is emitted in a wavelength range narrow enough to be taken as a single wavelength. One such emission line that is important in astronomy has a wavelength of 21 cm. What is the photon energy in the electromagnetic wave at that wavelength? Number 9.465714286 Units eVarrow_forwardHow much energy does a photon of UV light (frequency = 3.6 x 1016 Hz) have? How fast do the light travel in a vacuum, water (n=1.33), and glass (n=1.50)?arrow_forwarde. X-rays having a wavelength of 0.100 nanometer are scattered off initially stationary electrons, at an angle of 40.0⁰. (i) Calculate the wavelength of the scattered electromagnetic radiation (ii) What is the percent change in the wavelength of the X-rays due to scattering at this angle?arrow_forward
- A spectral emission line is electromagnetic radiation that is emitted in a wavelength range narrow enough to be taken as a sin-gle wavelength. One such emission line that is important in astronomy has a wavelength of 21 cm.What is the photon energy in the electromagnetic wave at that wavelength?arrow_forward(11%) Problem 7: Lasers can be constructed to produce an extremely high-intensity electromagnetic wave for a very brief time. Such lasers are called "pulsed lasers". They are used to ignite nuclear fusion, for example. Such a laser may produce an electromagnetic wave with a maximum electric field strength of 0.62 x 10 V/m for a time of 1.2 ns. Randomized Variables E, = 0.62 x 1011 V/m t = 1.2 ns E A 33% Part (a) What is the maximum magnetic field strength in the wave B0, in teslas? A 33% Part (b) What is the intensity of the beam I, in watts per square meter? D A 33% Part (c) How much energy, in kilojoules, does one pulse of the laser beam deliver to a 1.00 mm- area? Grade S E = Deductio Potentialarrow_forwardThe wavelengths of visible light range from approximately 400400 to 750 nm750 nm. Part (a) What is the minimum energy for a photon in this range? Give your answer in electron volts. Part (b) What is the maximum energy for a photon in this range? Give your answer in electron volts.arrow_forward
- The electromagnetic spectrum that lies between 0.40 and 0.76 mm is what we call visible light. Within this spectrum, the color violet has the shortest wavelength while the color red has the longest wavelength. Determine which of these colors, violet (l = 0.40 mm) or red (l = 0.76 mm), propagates more photon energy.arrow_forwardThings around you are emitting infrared radiation that includes the wavelength 1.01 *10-5 m. What is the energy of these IR photons?arrow_forwardA typical Blu-Ray player uses a gallium nitride (GaN) diode laser with a wavelength of 405.0 nm. What is the energy (in J) of one Blu-Ray photon?arrow_forward
- Q1(A). Prove using step-by-step solution that f(v) = E/h is equal to 1.80x1015 Hz, therefore λ = C/f is equal to 254nm. Q1(B). Refer to the visible light spectrum to determine what region of EM radiation does this light fall? Q1(C). Show step-by step solution to integrate the velocity function if the initial position of the particle is s(0) = 9. Find the particle position at: (1) t = 1 sec ; (2) t = 5 secarrow_forwardHow fast must an electron be moving if all its kinetic energy is lost to a single x-ray photon with the following characteristics? (a) The photon has a wavelength of 3.55 x 10-8 m near the high end of the x-ray electromagnetic spectrum. Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully.c (b) The photon has a wavelength of 3.55 x 10-13 m near the low end of the x-ray electromagnetic spectrum,arrow_forwardA radio transmitter broadcasts with a power of 9.73 kW and a frequency of 91.5 MHz. At what distance will a circular dish antenna with a diameter of 100 m intercept 1 photon/s. Give your answer in units of light-years (e.g. 0.450 for 0.450 light years) Round your answer to 3 decimal places. Add your answer Question 2 A light beam moving with velocity c along the x-axis approaches a space-ship moving with velcity 0.9c along the y-axis. The velocity of the light beam relative to the space ship is: A >c B) less than c but greater than 0.9c c) <.9carrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax