University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 38, Problem 38.15DQ
To determine
The reason why engineers and scientists must shield against x-ray production in high voltage equipment.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A “clever” technician decides to heat some water for his coffee with an x-ray machine. If the machine produces 10 rad/s, how long will it take to raise the temperature of a cup of water by 50°C? Ignore heat losses during this time.
1) If an arm of a patient is to be imaged with a narrow beam of X-ray with 10000 photons at 100 keV. The total thickness of the arm is 8 cm with the bone thickness to be 3 cm and the muscle thickness 5 cm. Assuming HVL values of muscle and bone are 2.5 and 1 cm at 100 keV, respectively. How many photons are absorbed by the arm?
explain this difference
.
Chapter 38 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 38.1 - Silicon films become better electrical conductors...Ch. 38.2 - Prob. 38.2TYUCh. 38.3 - Prob. 38.3TYUCh. 38.4 - Prob. 38.4TYUCh. 38 - Prob. 38.1DQCh. 38 - Prob. 38.2DQCh. 38 - Prob. 38.3DQCh. 38 - Prob. 38.4DQCh. 38 - Prob. 38.5DQCh. 38 - Prob. 38.6DQ
Ch. 38 - Prob. 38.7DQCh. 38 - Prob. 38.8DQCh. 38 - Prob. 38.9DQCh. 38 - Prob. 38.10DQCh. 38 - Prob. 38.11DQCh. 38 - Prob. 38.12DQCh. 38 - Prob. 38.13DQCh. 38 - Prob. 38.14DQCh. 38 - Prob. 38.15DQCh. 38 - Prob. 38.16DQCh. 38 - Prob. 38.17DQCh. 38 - Prob. 38.1ECh. 38 - Prob. 38.2ECh. 38 - Prob. 38.3ECh. 38 - Prob. 38.4ECh. 38 - Prob. 38.5ECh. 38 - Prob. 38.6ECh. 38 - Prob. 38.7ECh. 38 - Prob. 38.8ECh. 38 - Prob. 38.9ECh. 38 - Prob. 38.10ECh. 38 - Prob. 38.11ECh. 38 - Prob. 38.12ECh. 38 - Prob. 38.13ECh. 38 - Prob. 38.14ECh. 38 - Prob. 38.15ECh. 38 - Prob. 38.16ECh. 38 - Prob. 38.17ECh. 38 - Prob. 38.18ECh. 38 - Prob. 38.19ECh. 38 - Prob. 38.20ECh. 38 - Prob. 38.21ECh. 38 - An electron and a positron are moving toward each...Ch. 38 - Prob. 38.23ECh. 38 - Prob. 38.24ECh. 38 - Prob. 38.25ECh. 38 - Prob. 38.26PCh. 38 - Prob. 38.27PCh. 38 - Prob. 38.28PCh. 38 - Prob. 38.29PCh. 38 - Prob. 38.30PCh. 38 - Prob. 38.31PCh. 38 - Prob. 38.32PCh. 38 - Prob. 38.33PCh. 38 - Prob. 38.34PCh. 38 - Prob. 38.35PCh. 38 - Prob. 38.36PCh. 38 - Prob. 38.37PCh. 38 - Prob. 38.38PCh. 38 - Prob. 38.39PCh. 38 - Prob. 38.40CPCh. 38 - Prob. 38.41PPCh. 38 - Prob. 38.42PPCh. 38 - Prob. 38.43PPCh. 38 - Prob. 38.44PPCh. 38 - Prob. 38.45PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Why does the energy of characteristic x rays become increasingly greater for heavier atoms?arrow_forwardCT scanners do not detect details smaller than about 0.5 Is this limitation clue to the wavelength of x lays? Explain.arrow_forwardSpeculate as to why UV light causes sunburn, whereas visible light does not.arrow_forward
- (a) What voltage must be applied to an X-ray tube to obtain 0.0100-fm-wavelength X-rays for use in exploring the details of nuclei? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?arrow_forwardPhotons (50 KeV )from an X-ray tube fall on adjacent tissues below. Knowing that the thickness of the fat and muscle layers are 4.8 mm and 7.2 mm, respectively, and that the intensity of the incident beam in the fat is Io, the percentage of the incident beam that reaches the detector located after the muscle layer is:  a) 50.4% b) 97.2% c) 85.8% d) 11.7% e) 77.1%arrow_forwardQuestion: In the x-ray tube, the anode is angled at a small angle to help reduce the x-ray beam dimension, which is kind of a focusing effect. Suppose the dimension (beam width) of the high-speed electron beam that is used to generate the x-ray radiation is 8 mm. The dimension (beam width) of the x-ray beam at the immediate output of the x-ray tube is 2 mm. Calculate the small anode angle [in degrees].arrow_forward
- J 5 Question 2 (1) Assume that the average energy of β-rays (electrons) emitted from the S-ray source is 0.8 MeV, and the average ionization energy of gas molecules (atoms) in the GM counter tube is about 30 eV. Find the number of gas molecules ionized when one electron enters the GM tube (1MeV = 10°eV). (2) Assuming that the electrons and cations thus generated are attracted to the electrode as they are, what is the total amount of negative charge generated by ionization in C (coulombs)? (3) If this ionization takes 10-4s, what is the current flowing through the anode?arrow_forwardParents tell their children not to sit close to the television screen. Can x rays be produced in old, cathoderay-type televisions? Explain.arrow_forwardThe X ray beam contains a greater proportion of higher energy X rays the further in material it penetrates. This is said to be a 'hardening' of the beam. How would you modify the operation of the tube to give b) an X-ray beam with greater intensity? (AC 1.1) I (Ctrl) Prompt questionsarrow_forward
- During the deep X-ray therapy high energy X-rays are used. They are filtered by passing them through copper and aluminium plates. If the copper plate has thickness ?1 = 2 mm and aluminium plate ?2 =3 mm, find reduction in X-ray beam intensity. Linear attenuation coefficients for copper and aluminium are ?1 = 0.32 cm‐¹, and ?2 = 0.15 cm‐¹, respectively.arrow_forward3. (a) Find at what voltage on the X-ray tube, the emitted X-ray radiation has minimum wavelength imin = 10-' nm? (b) Calculate energy of corresponding X-ray photon (in Joules and keV).arrow_forwardWhy does the energy of characteristic x rays become increasingly greater for heavier atoms?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning