University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 38, Problem 38.36P
(a)
To determine
The initial wavelength of the photon.
(b)
To determine
The angle through which photon is scattered.
(c)
To determine
The angle of scattering of the photon.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An x-ray photon is scattered from a free electron (mass m) at rest. The wavelength of the scattered photon is I′, and the final speed of the struck electron is v. (a) What was the initial wavelength I of the photon? Express your answer in terms of I′, v, and m. (Hint: Use the relativistic expression for the electron kinetic energy.) (b) Through what angle f is the photon scattered? Express your answer in terms of I,I ′, and m. (c) Evaluate your results in parts (a) and (b) for a wavelength of 5.10 x 10-3 nm for the scattered photon and a final electron speed of 1.80 x 108 m/s. Give f in degrees.
Help Me
(a)
620 nanometers (nm)? (b)
What are the energy and momentum of a photon of red light of wavelength
What is the wavelength (in nm) of photons of energy 2.40 eV?
1.
Chapter 38 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 38.1 - Silicon films become better electrical conductors...Ch. 38.2 - Prob. 38.2TYUCh. 38.3 - Prob. 38.3TYUCh. 38.4 - Prob. 38.4TYUCh. 38 - Prob. 38.1DQCh. 38 - Prob. 38.2DQCh. 38 - Prob. 38.3DQCh. 38 - Prob. 38.4DQCh. 38 - Prob. 38.5DQCh. 38 - Prob. 38.6DQ
Ch. 38 - Prob. 38.7DQCh. 38 - Prob. 38.8DQCh. 38 - Prob. 38.9DQCh. 38 - Prob. 38.10DQCh. 38 - Prob. 38.11DQCh. 38 - Prob. 38.12DQCh. 38 - Prob. 38.13DQCh. 38 - Prob. 38.14DQCh. 38 - Prob. 38.15DQCh. 38 - Prob. 38.16DQCh. 38 - Prob. 38.17DQCh. 38 - Prob. 38.1ECh. 38 - Prob. 38.2ECh. 38 - Prob. 38.3ECh. 38 - Prob. 38.4ECh. 38 - Prob. 38.5ECh. 38 - Prob. 38.6ECh. 38 - Prob. 38.7ECh. 38 - Prob. 38.8ECh. 38 - Prob. 38.9ECh. 38 - Prob. 38.10ECh. 38 - Prob. 38.11ECh. 38 - Prob. 38.12ECh. 38 - Prob. 38.13ECh. 38 - Prob. 38.14ECh. 38 - Prob. 38.15ECh. 38 - Prob. 38.16ECh. 38 - Prob. 38.17ECh. 38 - Prob. 38.18ECh. 38 - Prob. 38.19ECh. 38 - Prob. 38.20ECh. 38 - Prob. 38.21ECh. 38 - An electron and a positron are moving toward each...Ch. 38 - Prob. 38.23ECh. 38 - Prob. 38.24ECh. 38 - Prob. 38.25ECh. 38 - Prob. 38.26PCh. 38 - Prob. 38.27PCh. 38 - Prob. 38.28PCh. 38 - Prob. 38.29PCh. 38 - Prob. 38.30PCh. 38 - Prob. 38.31PCh. 38 - Prob. 38.32PCh. 38 - Prob. 38.33PCh. 38 - Prob. 38.34PCh. 38 - Prob. 38.35PCh. 38 - Prob. 38.36PCh. 38 - Prob. 38.37PCh. 38 - Prob. 38.38PCh. 38 - Prob. 38.39PCh. 38 - Prob. 38.40CPCh. 38 - Prob. 38.41PPCh. 38 - Prob. 38.42PPCh. 38 - Prob. 38.43PPCh. 38 - Prob. 38.44PPCh. 38 - Prob. 38.45PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the energy of a photon whose momentum is 3.01024 kg• m/s ?arrow_forwardIn a beam of white light (wavelengths from 400 to 750 nm), what range of momentum can the photons have?arrow_forward(a) Find the momentum (in kg - m/s) of a 44.5 kev x-ray photon. |kg · m/s (b) Find the equivalent velocity (in m/s) of a neutron with the same momentum. m/s (c) What is the neutron's kinetic energy (in ev)? evarrow_forward
- Gamma rays (?-rays) are high-energy photons. In a certain nuclear reaction, a ?-ray of energy 0.836 MeV (million electronvolts) is produced. Compute the frequency of such a photon. How do I enter 2.02*10^20 in the answer window?arrow_forward(a) Calculate the wavelength (in m) of a photon that has the same momentum as a proton moving at 5.33% of the speed of light. (b) What is the energy of the photon in MeV? MeV (c) What is the kinetic energy of the proton in MeV? Mevarrow_forwardConsider the Compton scattering of a photon of wavelength Ao by a free electron moving with a momentum of magnitude P in the same direction as that of the incident photon. (a) Show that in this case the Compton equation (1.42) becomes (ро + P) с sin? AX = 240 E – Pc 2 h/Ao is the magnitude of the incident photon momentum, 0 is the photon scattering angle where po 1/2 and E = (m²c* + P²c²)*/² is the initial electron energy.arrow_forward
- What is the wavelength (in m) of a 2.06 eV photon? Find its frequency in hertz.arrow_forward. Find the momentum of a photon in eV/c and in kg·m/s if the wavelength is (a) 400 nm, (b) 1 Å = 0.1 nm, (c) 3 cm, and (d) 2 nm.arrow_forwardCan you please help with the following question? Thanks!arrow_forward
- Consider a photon with wavelength 0.011 nm. l = 0.011 nm What is the momentum of the photon in kg m/s? What is its energy in MeV?arrow_forwardA neutron of mass 1.675 × 10-27 kg has a de Broglie wavelength of 7.8x10-12 m. What is the kinetic energy (in eV) of this non-relativistic neutron? Please give your answer with two decimal places. 1 eV = 1.60 × 10-19 J, h = 6.626 × 10-34 J ∙ s.arrow_forwardAn X-ray photon moving along the x-direction is scattered by a stationary electron. The initial frequency of the photon is fi = 8 x 10t° Hz and the final frequency is fr = been scattered. In other words finesthe angle 0 that the outgoing photon makes with respect to the x-axis. Give your answer in degrees to 3 significant figures. Sketch a diagram showing the directions of the initial and final momenta. 7.75 x 1018 Hz. Find the direction of the photon's momentum after it hasarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax