University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 38, Problem 38.31P
To determine
The magnitude and direction of linear momentum electron after collision.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A photon with wavelength I = 0.1050 nm is incident on an electron that is initially at rest. If the photon scatters at an angle of 60.0° from its original direction, what are the magnitude and direction of the linear momentum of the electron just after it collides with the photon?
A photon with wavelength l = 0.1050 nm is incident on an electron that is initially at rest. If the photon scatters at an angle of 60.0 from its original direction, what are the magnitude and direction of the linear momentum of the electron just after it collides with the photon?
A photon with momentum 1.32×10-23 kg m/s² scatters off a free electron by an angle of 43 degrees. What percentage of
the photon's momentum is lost in the collision?
Chapter 38 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 38.1 - Silicon films become better electrical conductors...Ch. 38.2 - Prob. 38.2TYUCh. 38.3 - Prob. 38.3TYUCh. 38.4 - Prob. 38.4TYUCh. 38 - Prob. 38.1DQCh. 38 - Prob. 38.2DQCh. 38 - Prob. 38.3DQCh. 38 - Prob. 38.4DQCh. 38 - Prob. 38.5DQCh. 38 - Prob. 38.6DQ
Ch. 38 - Prob. 38.7DQCh. 38 - Prob. 38.8DQCh. 38 - Prob. 38.9DQCh. 38 - Prob. 38.10DQCh. 38 - Prob. 38.11DQCh. 38 - Prob. 38.12DQCh. 38 - Prob. 38.13DQCh. 38 - Prob. 38.14DQCh. 38 - Prob. 38.15DQCh. 38 - Prob. 38.16DQCh. 38 - Prob. 38.17DQCh. 38 - Prob. 38.1ECh. 38 - Prob. 38.2ECh. 38 - Prob. 38.3ECh. 38 - Prob. 38.4ECh. 38 - Prob. 38.5ECh. 38 - Prob. 38.6ECh. 38 - Prob. 38.7ECh. 38 - Prob. 38.8ECh. 38 - Prob. 38.9ECh. 38 - Prob. 38.10ECh. 38 - Prob. 38.11ECh. 38 - Prob. 38.12ECh. 38 - Prob. 38.13ECh. 38 - Prob. 38.14ECh. 38 - Prob. 38.15ECh. 38 - Prob. 38.16ECh. 38 - Prob. 38.17ECh. 38 - Prob. 38.18ECh. 38 - Prob. 38.19ECh. 38 - Prob. 38.20ECh. 38 - Prob. 38.21ECh. 38 - An electron and a positron are moving toward each...Ch. 38 - Prob. 38.23ECh. 38 - Prob. 38.24ECh. 38 - Prob. 38.25ECh. 38 - Prob. 38.26PCh. 38 - Prob. 38.27PCh. 38 - Prob. 38.28PCh. 38 - Prob. 38.29PCh. 38 - Prob. 38.30PCh. 38 - Prob. 38.31PCh. 38 - Prob. 38.32PCh. 38 - Prob. 38.33PCh. 38 - Prob. 38.34PCh. 38 - Prob. 38.35PCh. 38 - Prob. 38.36PCh. 38 - Prob. 38.37PCh. 38 - Prob. 38.38PCh. 38 - Prob. 38.39PCh. 38 - Prob. 38.40CPCh. 38 - Prob. 38.41PPCh. 38 - Prob. 38.42PPCh. 38 - Prob. 38.43PPCh. 38 - Prob. 38.44PPCh. 38 - Prob. 38.45PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A photon with wavelength 0.09 nm is incident on an electron that is initially at rest. If the photon scatters in the backward direction, what is the magnitude of the linear momentum of the electron just after the collision with the photon? (m = 9.109 x 1031 kg)arrow_forwardA photon with wavelength I = 0.0980 nm is incident on an electron that is initially at rest. If the photon scatters in the backward direction, what is the magnitude of the linear momentum of the electron just after the collision with the photon?arrow_forwardA photon with wavelength l = 0.0980 nm is incident on an electron that is initially at rest. If the photon scatters in the backward direction, what is the magnitude of the linear momentum of the electron just after the collision with the photon?arrow_forward
- Problem 4: A photon originally traveling along the x axis, with wavelength λ = 0.100 nm is incident on an electron (m = 9.109 x 10-31 kg) that is initially at rest. The x-component of the momentum of the electron after the collision is 5.0 x 10-24 kg m/s and the y-component of the momentum of the electron after the collision is -6.0 x 10-24 kg m/s. If the photon scatters at an angle + from its original direction, what is wavelength of the photon after the collision. h= 6.626 x 10:34 J·s and c = 3.0 x 108 m/s.arrow_forwardA photon with wavelength A 7.10 x 10 nm is incident on an electron that is initially at rest. If the photon scatters in the backward direction, what is the magnitude of the linear momentum of the electron just after the collision with the photon? (Just write the result in Sl units)arrow_forward1arrow_forward
- X-ray photons of wavelength 0.0248 nm are incident on a target and the Compton-scattered photons are observed at 80.0° above the photons' incident line of travel. [Use relativistic units for this problem!](a) What is the momentum of the incident photons? eV/c(b) What is the momentum (magnitude and angle) of the scattered electrons? eV/c°magnitude=61802.35 angel=?arrow_forwardA photon with wavelength I = 0.1385 nm scatters from an electron that is initially at rest. What must be the angle between the direction of propagation of the incident and scattered photons if the speed of the electron immediately after the collision is 8.90 x 106 m/s?arrow_forwardYou want to use a microscope to study the structure of a mitochondrion about 1.00 um in size. To be able to observe small details within the mitochondrion, you want to use a wavelength of 0.0500 nm. If your microscope uses light of this wavelength, what is the momentum p of a photon? p = kg-m/s If your microscope uses light of this wavelength, what is the energy E of a photon? E = If instead your microscope uses electrons of this de Broglie wavelength, what is the momentum p. of an electron? Pe = kg-m/s If instead your microscope uses electrons of this de Broglie wavelength, what is the velocity v of an electron? v = m/s If instead your microscope uses electrons of this de Broglie wavelength, what is the kinetic energy K of an electron? K = What advantage do your calculations suggest electrons have compared to photons? O An electron's charge allows it to attach to observed particles, whereas a photon's electric neutrality prevents it from moving close enough to the observed particles…arrow_forward
- What speed must an electron have if its momentum is to be the same as that of an X-ray photon with a wavelength of 0.35 nm?arrow_forwardThe momentum of light, as it is for particles, is exactly reversed when a photon is reflected straight back from a mirror, assuming negligible recoil of the mirror. The change in momentum is twice the photon’s incident momentum, as it is for the particles. Suppose that a beam of light has an intensity I and falls on an area A of a mirror and reflects from it. Er = I A t p = 2 ( I A t )/c Use Newton’s second law to write an equation for the force on the mirror for time t. Use the variables along with c for the speed of light.arrow_forwardAn X-ray photon of λ0 = 3, 0 A is scattered by a free, resting electron and deflected 90 degrees. What is the kinetic energy of the recoil of the electron (in eV)?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning