University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 38, Problem 38.19E
(a)
To determine
The change in the wavelength of the photon.
(b)
To determine
The wavelength of the scattered light.
(c)
To determine
The change in energy of the photon.
(d)
To determine
The energy gained by the electron.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
If a photon of wavelength 0.04250 nm strikes a free electron and is scattered at an angle of 35.0 from its original direction, find (a) the change in the wavelength of this photon; (b) the wavelength of the scattered light; (c) the change in energy of the photon (is it a loss or a gain?); (d) the energy gained by the electron.
A hydrogen atom on the surface of the sun radiates a photon with wavelength 1800 nm.
The sun has a radius, Tsun = 6.96 × 108 m, and a mass, Msun = 1.99 × 10³⁰ kg.
(a) Calculate the change in wavelength when the photon is observed a long way -
effectively at an infinite distance from the sun (or any other massive object).
(b) How fast and in what direction would the observer have to move in order to cancel
this change in wavelength?
f a photon of wavelength 0.04250 nm strikes a free electron and is scattered at an angle of 35.0° from its original direction, find (a) the change in the wavelength of this photon; (b) the wavelength of the scattered light; (c) the change in energy of the photon (is it a loss or a gain?); (d) the energy gained by the electron
Chapter 38 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 38.1 - Silicon films become better electrical conductors...Ch. 38.2 - Prob. 38.2TYUCh. 38.3 - Prob. 38.3TYUCh. 38.4 - Prob. 38.4TYUCh. 38 - Prob. 38.1DQCh. 38 - Prob. 38.2DQCh. 38 - Prob. 38.3DQCh. 38 - Prob. 38.4DQCh. 38 - Prob. 38.5DQCh. 38 - Prob. 38.6DQ
Ch. 38 - Prob. 38.7DQCh. 38 - Prob. 38.8DQCh. 38 - Prob. 38.9DQCh. 38 - Prob. 38.10DQCh. 38 - Prob. 38.11DQCh. 38 - Prob. 38.12DQCh. 38 - Prob. 38.13DQCh. 38 - Prob. 38.14DQCh. 38 - Prob. 38.15DQCh. 38 - Prob. 38.16DQCh. 38 - Prob. 38.17DQCh. 38 - Prob. 38.1ECh. 38 - Prob. 38.2ECh. 38 - Prob. 38.3ECh. 38 - Prob. 38.4ECh. 38 - Prob. 38.5ECh. 38 - Prob. 38.6ECh. 38 - Prob. 38.7ECh. 38 - Prob. 38.8ECh. 38 - Prob. 38.9ECh. 38 - Prob. 38.10ECh. 38 - Prob. 38.11ECh. 38 - Prob. 38.12ECh. 38 - Prob. 38.13ECh. 38 - Prob. 38.14ECh. 38 - Prob. 38.15ECh. 38 - Prob. 38.16ECh. 38 - Prob. 38.17ECh. 38 - Prob. 38.18ECh. 38 - Prob. 38.19ECh. 38 - Prob. 38.20ECh. 38 - Prob. 38.21ECh. 38 - An electron and a positron are moving toward each...Ch. 38 - Prob. 38.23ECh. 38 - Prob. 38.24ECh. 38 - Prob. 38.25ECh. 38 - Prob. 38.26PCh. 38 - Prob. 38.27PCh. 38 - Prob. 38.28PCh. 38 - Prob. 38.29PCh. 38 - Prob. 38.30PCh. 38 - Prob. 38.31PCh. 38 - Prob. 38.32PCh. 38 - Prob. 38.33PCh. 38 - Prob. 38.34PCh. 38 - Prob. 38.35PCh. 38 - Prob. 38.36PCh. 38 - Prob. 38.37PCh. 38 - Prob. 38.38PCh. 38 - Prob. 38.39PCh. 38 - Prob. 38.40CPCh. 38 - Prob. 38.41PPCh. 38 - Prob. 38.42PPCh. 38 - Prob. 38.43PPCh. 38 - Prob. 38.44PPCh. 38 - Prob. 38.45PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 0.75-nm photon is scattered by a stationary electron. The speed of the electron’s recoil is 1.5106 m/s. (a) Find the wavelength shift of the photon. (b) Find the scattering angle of the photon.arrow_forwardX-ray photons of wavelength 0.0248 nm are incident on a target and the Compton-scattered photons are observed at 80.0° above the photons' incident line of travel. [Use relativistic units for this problem!](a) What is the momentum of the incident photons? eV/c(b) What is the momentum (magnitude and angle) of the scattered electrons? eV/c°magnitude=61802.35 angel=?arrow_forwardA photon having wavelength l scatters off a free electron at A (as shown), producing a second photon having wavelength λ'. This photon then scatters off another free electron at B, producing a third photon having wavelength λ''and moving in a direction directly opposite the original photon as shown in the figure. Determine the value of Δλ = λ'' -λ.arrow_forward
- A x-ray photon of wavelength 147.0 pm is scattered through an angle of 60° by an electron that is initially at rest. (a) Calculate the wavelength of the scattered x-ray photon. (b) How much kinetic energy does the electron carry?arrow_forwardCalculate the momentum of an X-ray photon with a wavelength of 0.17nm. H80 this value compare with the momentum of a free electron that has been accelerated through a potential difference of 5000 volts? (Hint: electron mass, m, = 9.10938 x 10" kg; electron charge e = 1.602 x 10"C; speed of light e = 3.0 x 10' m.s'; 1.00 J=1.00 VC; h = 6.626 x 10"J.s. The various energy units are: 1 J= 1 kg.m's³, 1.00 eV -1VC, leV = 1.602 x 10 "J, 1J - 6.242 x 10" eV, etc.).arrow_forward(4) (a) What is the wavelength of an X-ray photon of energy 10.0 keV? (b) What is the wavelength of a gamma-ray photon of energy 1.00 MeV? (c) What is the range of energies of photons of visible light with wavelengths 350-700 nm?arrow_forward
- A 2.0-kg object falls from a height of 5.0 m to the ground. If all the gravitational potential energy of this mass could be converted to visible light of wavelength 5.0 × 10−7 m, how many photons would be produced?arrow_forwardA 2.0 - kg object falls from a height of 5.0 m to the ground. If the change in the object’s kinetic energy could be converted to visible light of wavelength 5.0 x 10-7 m, how many photons would be produced?arrow_forward(a) If a photon and an electron each have the same energy of 20.0 eV, find the wavelength of each. (b) If a photon and an electron each have the same wavelength of 250 nm, find the energy of each. (c) You want to study an organic molecule that is about 250 nm long using either a photon or an electron microscope. Approximately what wavelength should you use and which probe, the electron or the photon, is likely to damage the molecule the least?arrow_forward
- a) In an experiment to investigate the photoelectric effect, a metal surface is illuminated with monochromatic light and photoelectrons are emitted. If the experiment were repeated with light of the same frequency but twice the intensity, state what effect, if any, this would have on the photon energy, and the maximum kinetic energy of the photoelectrons emitted. b) A certain metal surface has a work function of 0.66 eV. Calculate the value of the work function in joules. (e = 1.6 x 10-19 C), as well as, the maximum kinetic energy of the photoelectrons emitted when the surface is illuminated with light of wavelength 520 nm. (h = 6.6 x 10-34 Js, c = 3.0 x 108 m s-1)arrow_forwardWhen light with a wavelength of 208 nm is incident on a certain metal surface, electrons are ejected with a maximum kinetic energy of 3.59 × 10-19 J. Determine the wavelength (in nm) of light that should be used to double the maximum kinetic energy of the electrons ejected from this surface.arrow_forward(b) Calculate the de Broglie wavelength of an electron having a mass of 9.11 x 10-31 kg and a charge of 1.602 x 10-19 J with a Kinetic energy of 110 eV. The value of the Planck’s constant is equal to 6.63 * 10-34 Js.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning