Mechanics of Materials (10th Edition)
10th Edition
ISBN: 9780134319650
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3.4, Problem 3.8FP
A bar has a length of 8 in. and cross-sectional area of 12 in2. Determine the modulus of elasticity of the material if it is subjected to an axial tensile load of 10 kip and stretches 0.003 in. The material has linear elastic behavior.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2. A circular steel bar with with a diameter of 3 in and length of 2 m is subjected to an tensile force of 80 kN.
Determine the change in length and the change in its cross section if the material behaves elastically. Let y be the
longitudinal axis and Modulus of Elasticity be 200 GPa. Assume v=0.32
At the proportional limit, a 20-mm-thick x 75-mm-wide bar elongates 7.2 mm under an axial load of 470 kN. The bar is 1.6-m long. If
Poisson's ratio is 0.32 for the material, determine the modulus of elasticity.
O 69.6 GPa
O 58.3 GPa
EEA
O 76.2 GPa
O 44.7 GPa
48.9 GPa
1. The acrylic plastic rod is 200 mm long and 15 mm in
diameter. If an axial load of 300 N is applied to it, determine
the change in its length and the change in its diameter.
Material parameters are Ep = 2.70 GPa and vp = 0.4.
300 N
200 mm
300 N
Chapter 3 Solutions
Mechanics of Materials (10th Edition)
Ch. 3.4 - Define a homogeneous material.Ch. 3.4 - Indicate the points on the stress-strain diagram...Ch. 3.4 - Define the modulus of elasticity E.Ch. 3.4 - At room temperature, mild steel is a ductile...Ch. 3.4 - Engineering stress and strain are calculated using...Ch. 3.4 - As the temperature increases the modulus of...Ch. 3.4 - A 100-mm-long rod has a diameter of 15 mm. If an...Ch. 3.4 - A bar has a length of 8 in. and cross-sectional...Ch. 3.4 - A 10-mm-diameter rod has a modulus of elasticity...Ch. 3.4 - The material for the 50-mm-long specimen has the...
Ch. 3.4 - The material for the 50-mm-long specimen has the...Ch. 3.4 - If the elongation of wire BC is 0.2 mm after the...Ch. 3.4 - A tension test was performed on a steel specimen...Ch. 3.4 - Data taken from a stress-strain test for a ceramic...Ch. 3.4 - Data taken from a stress-strain test for a ceramic...Ch. 3.4 - The stress-strain diagram for a steel alloy having...Ch. 3.4 - The stress-strain diagram for a steel alloy having...Ch. 3.4 - The stress-strain diagram for a steel alloy having...Ch. 3.4 - The rigid beam is supported by a pin at C and an...Ch. 3.4 - The rigid beam is supported by a pin at C and an...Ch. 3.4 - Acetal plastic has a stress-strain diagram as...Ch. 3.4 - The stress-strain diagram for an aluminum alloy...Ch. 3.4 - The stress-strain diagram for an aluminum alloy...Ch. 3.4 - The stress-strain diagram for an aluminum alloy...Ch. 3.4 - A bar having a length of 5 in. and cross-sectional...Ch. 3.4 - The rigid pipe is supported by a pin at A and an...Ch. 3.4 - The rigid pipe is supported by a pin at A and an...Ch. 3.4 - Direct tension indicators are sometimes used...Ch. 3.4 - The rigid beam is supported by a pin at C and an...Ch. 3.4 - The rigid beam is supported by a pin at C and an...Ch. 3.4 - The stress-strain diagram for a bone is shown, and...Ch. 3.4 - The stress-strain diagram for a bone is shown and...Ch. 3.4 - The two bars are made of a material that has the...Ch. 3.4 - The two bars are made of a material that has the...Ch. 3.4 - The pole is supported by a pin at C and an A-36...Ch. 3.4 - The bar DA is rigid and is originally held in the...Ch. 3.7 - A 100-mm-long rod has a diameter of 15 mm. If an...Ch. 3.7 - A solid circular rod that is 600 mm long and 20 mm...Ch. 3.7 - A 20-mm-wide block is firmly bonded to rigid...Ch. 3.7 - A 20-mm-wide block is bonded to rigid plates at...Ch. 3.7 - The acrylic plastic rod is 200 mm long and 15 mm...Ch. 3.7 - The plug has a diameter of 30 mm and fits within a...Ch. 3.7 - The elastic portion of the stress-strain diagram...Ch. 3.7 - The elastic portion of the stress-strain diagram...Ch. 3.7 - The brake pads for a bicycle tire are made of...Ch. 3.7 - The lap joint is connected together using a 1.25...Ch. 3.7 - The lap joint is connected together using a 1.25...Ch. 3.7 - The rubber block is subjected to an elongation of...Ch. 3.7 - The shear stress-strain diagram for an alloy is...Ch. 3.7 - A shear spring is made from two blocks of rubber,...Ch. 3 - The elastic portion of the tension stress-strain...Ch. 3 - The elastic portion of the tension stress-strain...Ch. 3 - The rigid beam rests in the horizontal position on...Ch. 3 - The wires each have a diameter of 12 in., length...Ch. 3 - The wires each have a diameter of 12 in., length...Ch. 3 - diameter steel bolts. If the clamping force in...Ch. 3 - The stress-strain diagram for polyethylene, which...Ch. 3 - The pipe with two rigid caps attached to its ends...Ch. 3 - The 8-mm-diameter bolt is made of an aluminum...Ch. 3 - An acetal polymer block is fixed to the rigid...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A bar has a length of 200 mm and cross-sectional area of 7500 mm2. Determine the modulus ofelasticity of the material if it is subjected to an axial tensile load of 50 kN and stretches 0.075 mm.The material has linear-elastic behavior.arrow_forwardA tensile load of 50, 000 lb is applied to a metal bar with a 0.6 in x 0.6 in. cross section and a gage length of 2 in. Under this load the bar elastically deforms so that the gage length increases to 2.007 in. and the cross section decreases to 0.599 in. x 0.599 in. Determine the modulus of elasticity and Poisson’s ratio for this metal.arrow_forwardThe stress-strain diagram for a material is shown in the figure below for its elastic portion.A specimen from this material has a diameter of 16mm and a length of 60mm. A tensile loadof 30kN is applied to the specimen. Determine its diameter and length following the applicationof this load. Poisson’s ratio for the material is 0.4.arrow_forward
- A bar made of a space age polymer has the stress-strain curve shown below. If the bar has a length of 2 ft and a cross section area of 0.925 in², and an axial load of 2 kip is applied, what is its elongation? The equation of the stress-strain curve is: o = o (psi) The elongation,8 = in. 96000.28 + ε (in/inarrow_forwardA plastic rod is 200mm long and 15mm in diameter. If a tensile load of 300N is applied to it, determine the change in its length and the change in its diameter. Assume Modulus of elasticity (E) = 2.70 GPa, and poisson's ratio (v) = 0.4. indicate free body diagramarrow_forwardThe stepped rod is made up of two different materials A and B of lengths 80 cm and 1.2 m respectively. The diameters of materials B and A are 2.5 and 3.5 cm respectively. The modulus of elasticity of materials A and B are 250 and 150 GPa respectively. The elongation of the rod is the same for both the materials. A total tensile load of 40 kN is applied to both the materials A and B together. Calculate the load in each material.arrow_forward
- A square bar subjected to a tensile load of 100kN having a gauge length of 200mm extends to a length of 0.19mm . Given the tensile strength as 200 MPa , determine ( 1 ) Side of the bar ( express in mm ) Final length ( express in mm ) Modulus of elasticity ( express )arrow_forwardAcetal plastic has a stress-strain diagram as shown. If a bar of this material has a length of 3 ft and cross-sectional area of 0.875 in2, and is subjected to an axial load of 2.5 kip, determine its elongation.arrow_forwardThe stress–strain diagram for a material can be approximated by the two line segments shown. If a bar having a diameter of 80 mm and a length of 1.5 m is made from this material, determine the critical load provided the ends are fixed. Assume that the load acts through the axis of the bar. Use Engesser’s equation.arrow_forward
- A uniform edge load of 400 lb/in. and 300 lb/in. is applied to the thin plane specimen shown below. If the specimen is originally square and has dimensions of a = 2 in., b = 2 in., and a thickness of t = 0.25 in., determine its new dimensions a', b', and t' after the load is applied. Elastic modulus E = 600 x 103 psi and Poisson's ratio v = 0.3. 300 lb/in. a = 2 in. 400 lb/in. 300 lb/in. b = 2 in. 400 lb/in.arrow_forwardIf a force of 300 kN is applied to the top of a circular steel bar with a diameter of 150mm and a length of 300mm, reducing the length of the reaxial direction by 0.16mm, and increasing the diameter of the cross section by 0.01mm, what is the modulus of elasticity E and poisson's ratio of the steel rod?arrow_forwardThe stress–strain diagram for a material can be approximated by the two line segments shown. If a bar having a diameter of 80 mm and a length of 1.5 m is made from this material, determine the critical load provided the ends are pinned. Assume that the load acts through the axis of the bar. Use Engesser’s equation.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
EVERYTHING on Axial Loading Normal Stress in 10 MINUTES - Mechanics of Materials; Author: Less Boring Lectures;https://www.youtube.com/watch?v=jQ-fNqZWrNg;License: Standard YouTube License, CC-BY