Mechanics of Materials (10th Edition)
10th Edition
ISBN: 9780134319650
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3.4, Problem 3.19P
The stress-strain diagram for a bone is shown, and can be described by the equation ε = 0.45 (10−6) σ +0.36 (10−12) σ3, where σ is in kPa. Determine the yield strength assuming a 0.3% offset.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Question 14
Determine the total strain (mm/mm) of a 2.58-m bar with a diameter of 23 mm subjected to a tensile force of 96 kN at a temperature increase of 60 C°. Consider the a=22.4 µm/mC° and E = 139 GPa.
Express your answer to 5 decimal places.
A tri-axial state of stress, σx , σy, and σz ,exists in a steel machine part. For steel, E = 200GPa and ν = 0.3. Determine the normal strain in the x-direction if σx = 100MPa, σy = 35MPa, σz = 70MPa. Determine the dilatation. Determine the modulus of rigidity.
σ (MPa)
490
0.007
-e (mm/mm)
A specimen has the stress-strain diagram shown. The specimen has an original diameter of 12.4 mm, and its modulus of rigidity is
27.4 GPa. Determine the specimen's diameter when the longitudinal stress is 325 MPa.
Chapter 3 Solutions
Mechanics of Materials (10th Edition)
Ch. 3.4 - Define a homogeneous material.Ch. 3.4 - Indicate the points on the stress-strain diagram...Ch. 3.4 - Define the modulus of elasticity E.Ch. 3.4 - At room temperature, mild steel is a ductile...Ch. 3.4 - Engineering stress and strain are calculated using...Ch. 3.4 - As the temperature increases the modulus of...Ch. 3.4 - A 100-mm-long rod has a diameter of 15 mm. If an...Ch. 3.4 - A bar has a length of 8 in. and cross-sectional...Ch. 3.4 - A 10-mm-diameter rod has a modulus of elasticity...Ch. 3.4 - The material for the 50-mm-long specimen has the...
Ch. 3.4 - The material for the 50-mm-long specimen has the...Ch. 3.4 - If the elongation of wire BC is 0.2 mm after the...Ch. 3.4 - A tension test was performed on a steel specimen...Ch. 3.4 - Data taken from a stress-strain test for a ceramic...Ch. 3.4 - Data taken from a stress-strain test for a ceramic...Ch. 3.4 - The stress-strain diagram for a steel alloy having...Ch. 3.4 - The stress-strain diagram for a steel alloy having...Ch. 3.4 - The stress-strain diagram for a steel alloy having...Ch. 3.4 - The rigid beam is supported by a pin at C and an...Ch. 3.4 - The rigid beam is supported by a pin at C and an...Ch. 3.4 - Acetal plastic has a stress-strain diagram as...Ch. 3.4 - The stress-strain diagram for an aluminum alloy...Ch. 3.4 - The stress-strain diagram for an aluminum alloy...Ch. 3.4 - The stress-strain diagram for an aluminum alloy...Ch. 3.4 - A bar having a length of 5 in. and cross-sectional...Ch. 3.4 - The rigid pipe is supported by a pin at A and an...Ch. 3.4 - The rigid pipe is supported by a pin at A and an...Ch. 3.4 - Direct tension indicators are sometimes used...Ch. 3.4 - The rigid beam is supported by a pin at C and an...Ch. 3.4 - The rigid beam is supported by a pin at C and an...Ch. 3.4 - The stress-strain diagram for a bone is shown, and...Ch. 3.4 - The stress-strain diagram for a bone is shown and...Ch. 3.4 - The two bars are made of a material that has the...Ch. 3.4 - The two bars are made of a material that has the...Ch. 3.4 - The pole is supported by a pin at C and an A-36...Ch. 3.4 - The bar DA is rigid and is originally held in the...Ch. 3.7 - A 100-mm-long rod has a diameter of 15 mm. If an...Ch. 3.7 - A solid circular rod that is 600 mm long and 20 mm...Ch. 3.7 - A 20-mm-wide block is firmly bonded to rigid...Ch. 3.7 - A 20-mm-wide block is bonded to rigid plates at...Ch. 3.7 - The acrylic plastic rod is 200 mm long and 15 mm...Ch. 3.7 - The plug has a diameter of 30 mm and fits within a...Ch. 3.7 - The elastic portion of the stress-strain diagram...Ch. 3.7 - The elastic portion of the stress-strain diagram...Ch. 3.7 - The brake pads for a bicycle tire are made of...Ch. 3.7 - The lap joint is connected together using a 1.25...Ch. 3.7 - The lap joint is connected together using a 1.25...Ch. 3.7 - The rubber block is subjected to an elongation of...Ch. 3.7 - The shear stress-strain diagram for an alloy is...Ch. 3.7 - A shear spring is made from two blocks of rubber,...Ch. 3 - The elastic portion of the tension stress-strain...Ch. 3 - The elastic portion of the tension stress-strain...Ch. 3 - The rigid beam rests in the horizontal position on...Ch. 3 - The wires each have a diameter of 12 in., length...Ch. 3 - The wires each have a diameter of 12 in., length...Ch. 3 - diameter steel bolts. If the clamping force in...Ch. 3 - The stress-strain diagram for polyethylene, which...Ch. 3 - The pipe with two rigid caps attached to its ends...Ch. 3 - The 8-mm-diameter bolt is made of an aluminum...Ch. 3 - An acetal polymer block is fixed to the rigid...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The elastic portion of the stress–strain diagram for an aluminum alloy is shown in the figure. The specimen from which it was obtained has an original diameter of 12.7 mm andagagelengthof50.8mm.IfaloadofP=60kNisapplied to the specimen, determine its new diameter and length. Take n = 0.35.arrow_forwardThe normal strain in a suspended bar of material of varying cross section due to its own weight is given by the expression γy/3E where γ = 2.9 lb/in.3 is the specific weight of the material, y = 3.4 in. is the distance from the free (i.e., bottom) end of the bar, L = 17 in. is the length of the bar, and E = 24000 ksi is a material constant. Determine, (a) the change in length of the bar due to its own weight. (b) the average normal strain over the length L of the bar. (c) the maximum normal strain in the bar.arrow_forwardDetermine the change in length, width and thickness of steel bar which is 4m long, 30mm wide and 20mm thick and is subjected to an axial pull of 30 kN in the direction of length. Take E = 200 GPa and poison's ratio of 0.3. Also determine the volumetric strain and change in volume.arrow_forward
- Consider a material with the stress-strain diagram shown (similar to a generic metal, but approximated to make the calculations easier). The material is stressed to 900 MPa. What is the new modulus of toughness? σ (MPa) 1200- 800- 400- a more realistic curve 0.10 0.20 0.30 0.40 εarrow_forwardPart B Data taken from a stress-strain test for a ceramic are given in the table. The curve is linear between the origin and the first point. Determine the modulus of elasticity. VO AEO vec ? E = ksi Submit Request Answer Figure 1 of 1 Part C σ (ksi) e (in./in.) Determine the modulus of resilience. ΑΣφ ? vec 33.2 0.0006 45.5 0.0010 in-lb Up = in 49.4 0.0014 51.5 0.0018 Submit Request Answer 53.4 0.0022arrow_forwardThe elastic region of the tension stress-strain diagram for an aluminum alloy is shown in (Figure 1). The specimen used for the test has a gage length of 2 in. and a diameter of 0.5 in. The shear modulus is Gal = 3.8 (10³) ksi. Figure σ (ksi) 70 VI 0.00614 1 of 1 € (in./in.) Part A If the applied load is 15 kip, determine the new diameter of the specimen. Express your answer in inches to four significant figures. IVE ΑΣΦ ↓↑ vec d' = Submit Provide Feedback Request Answer ? in.arrow_forward
- A steel rod, 5m in length, is 100 sq. mm at the cross-section. The rod is in its original length at 20 degrees Celsius. Determine the thermal strain at 70 degrees Celsius if the rod is unrestricted? Use α= 11.7 x 10^-6 per degree Celsiusarrow_forwardFor the state of a plane strain with εx, εy and γxy components: (a) construct Mohr’s circle and (b) determine the equivalent in-plane strains for an element oriented at an angle of 30° clockwise. εx = 255 × 10-6 εy = -320 × 10-6 γxy = -165 × 10-6arrow_forwardA thin polymer plate PQR is deformed such that corner Q is displaced downward a distance L = 0.10 in. to new position Q' as shown. Determine the magnitude of the shear strain at Q' associated with the two edges (PQ and QR). P 25 in. 7982 μrad 6862 μrad 09533 μrad O6186 prad O8600 μrad 4 in. R 10 in. L Xarrow_forward
- 5 decimal places Determine the total strain (mm/mm) of a 2.64-m bar with a diameter of 21 mm subjected to a tensile force of 71 kN at a temperature increase of 49 C°. Consider the α=27.3 µm/mC° and E = 122 GPa.arrow_forwardFor a certain metal the strength coefficient K = 600 MPa and the strain hardening exponent n =0.20. During a forming operation, the final true strain that the metal experiences ε = 0.73.Determine the flow stress at this strain and the average flow stress that the metal experiencedduring the operation.arrow_forwardThe elastic portion of the stress-strain diagram for an aluminum alloy is shown in the figure below (Figure 1). The specimen from which it was obtained has an original diameter of 12.7 mm and a gage length of 50.5 mm. Take v=0.35 Figure σ (MPa) 490 0.007 € (mm/mm) Part A If a load of P = 40 kN is applied to the specimen, determine its new diameter. Express your answer to four significant figures and include appropriate units. d= Submit Part B L= O Value Submit μA Request Answer Determine its length. Express your answer to four significant figures and include appropriate units. Provide Feedback Value Units Request Answer ? Units ?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
EVERYTHING on Axial Loading Normal Stress in 10 MINUTES - Mechanics of Materials; Author: Less Boring Lectures;https://www.youtube.com/watch?v=jQ-fNqZWrNg;License: Standard YouTube License, CC-BY