The per-unit equivalent circuit of two transformers T a and T b connected in parallel, with the same nominal voltage ratio and the same reactan of 0.1 per unit on the same base, is shown in Figure 3.43. Transformer T b has a voltage-magnitude step-up toward the load of 1.05 times that of T a (that is, the tap on the secondary winding of T b is set to 1.05). The load is represented by 0.8 + j 0.6 per unit at a voltage V 2 = 1 .0 / 0 ° per unit. Determine the complex power in per unit transmitted to the load through each transformer, comment on how the transformers share the real and reactive powers.
The per-unit equivalent circuit of two transformers T a and T b connected in parallel, with the same nominal voltage ratio and the same reactan of 0.1 per unit on the same base, is shown in Figure 3.43. Transformer T b has a voltage-magnitude step-up toward the load of 1.05 times that of T a (that is, the tap on the secondary winding of T b is set to 1.05). The load is represented by 0.8 + j 0.6 per unit at a voltage V 2 = 1 .0 / 0 ° per unit. Determine the complex power in per unit transmitted to the load through each transformer, comment on how the transformers share the real and reactive powers.
Solution Summary: The author explains the complex power in per unit supplied to the load through each transformer and the process of sharing real and reactive powers by transformer.
The per-unit equivalent circuit of two transformers
T
a
and
T
b
connected in parallel, with the same nominal voltage ratio and the same reactan of 0.1 per unit on the same base, is shown in Figure 3.43. Transformer
T
b
has a voltage-magnitude step-up toward the load of 1.05 times that of
T
a
(that is, the tap on the secondary winding of
T
b
is set to 1.05). The load is represented by
0.8
+
j
0.6
per unit at a voltage
V
2
=
1
.0
/
0
°
per unit. Determine the complex power in per unit transmitted to the load through each transformer, comment on how the transformers share the real and reactive powers.
A 20 kVA, 2000/200-V, 50-Hz transformer has a high voltage winding resistance of 0.2 2 and a
leakage reactance of 0.242. The low voltage winding resistance is 0.05 2 and the leakage reactance is
0.02 2. Find the equivalent winding resistance, reactance and impedance referred to the (i) high
voltage side and (ii) the low-voltage side. (Draw the related equivalent circuits)
A 250/125 V, five kVA single-phase transformer has a primary resistance of 0.2 ohms and reactance of 0.75 ohms. The secondary resistance is 0.05 ohm and reactance of 0.2 ohms.a) Determine its regulation while supplying full load on 0.8 leading p.f.b) The secondary terminal voltage on full load and 0.8 leading p.f.Ans.: -0.4.88%; 131.1
talk about coreless transformer
Chapter 3 Solutions
Power System Analysis and Design (MindTap Course List)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.