Inputs Teacher Model (Pretrained) Internal Features!! Input C (Complete Data) Transformer Encoder T Teacher Prediction y_! Input M (Missing Data) Prediction Loss (y s'Avs Total Loss A Knowledge Distillation (Student B) Knowledge Distillation (Student A) Feature Alignment (Avs Backpropagation Total Loss B Backpropagation Prediction Loss (y "B vs y_0) Student ModeA (Handles MissingInput) Transformer Encoder S_A Ground Truth RUL RULLabels Student A Prediction y "A Student Model B (Handles Missing Labels) Transformer Encoder S B Student B Prediction y_s^8 Final Output Final RUL Prediction (y_s) Ds- S₁ S2 S3 D₁ T₁ Encoder Output (shifted right) Output Embedding Input Embedding Attention Muti-Head Add & Norm Feed Forward Add & Norm Muti-Head Add & Attention Norm Encoder #N Muti-Head Add & Attention Norm Feed Forward Add & Norm Decoder #N Linear T₁ S₁ T₁ S₁ S₂ S3 Linear Кт VT Qs Vs Ks Cross Adaptive Layer Sigmoid Muti-Head Cross Attention Muti-Head Attention Add & Norm Add & Norm S₂ ypred T₁ S₁ S₁ LMMD LMSE Feed Forward Feed Forward Ldistillation S3 Ylabel Add & Norm Add & Norm ΤΙ S₁ Cross Adaptive Layer |Ltotal = arg min (WaLdistillation+ WMLMMD + W,Lregression) Fig. 6. Architecture of the proposed MSCATN.

Systems Architecture
7th Edition
ISBN:9781305080195
Author:Stephen D. Burd
Publisher:Stephen D. Burd
Chapter10: Application Development
Section: Chapter Questions
Problem 14VE
icon
Related questions
Question

I'm reposting my question again please make sure to avoid any copy paste from the previous answer because those answer did not satisfy or responded to the need that's why I'm asking again 

The knowledge distillation part is not very clear in the diagram. Please create two new diagrams by separating the two student models:

  1. First Diagram (Student A - Missing Values):

    • Clearly illustrate the student training process.

    • Show how knowledge distillation happens between the teacher and Student A.

    • Explain what the teacher teaches Student A (e.g., handling missing values) and how this teaching occurs (e.g., through logits, features, or attention).

  2. Second Diagram (Student B - Missing Labels):

    • Similarly, detail the training process for Student B.

    • Clarify how knowledge distillation works between the teacher and Student B.

    • Specify what the teacher teaches Student B (e.g., dealing with missing labels) and how the knowledge is transferred.

Since these are two distinct challenges (missing values vs. missing labels), they should not be combined in the same diagram. Instead, create two separate diagrams for clarity.

For reference, I will attach a second image (architecture of the proposed MSCATNN) as an example of the level of detail I expect for both cases (Student A and Student B).

Inputs
Teacher Model (Pretrained)
Internal Features!!
Input C (Complete Data)
Transformer Encoder T
Teacher Prediction y_!
Input M (Missing Data)
Prediction Loss (y s'Avs
Total Loss A
Knowledge Distillation
(Student B)
Knowledge Distillation
(Student A)
Feature Alignment (Avs
Backpropagation
Total Loss B
Backpropagation
Prediction Loss (y "B vs
y_0)
Student ModeA (Handles
MissingInput)
Transformer Encoder S_A
Ground Truth RUL
RULLabels
Student A Prediction y "A
Student Model B (Handles
Missing Labels)
Transformer Encoder S B
Student B Prediction y_s^8
Final Output
Final RUL Prediction (y_s)
Transcribed Image Text:Inputs Teacher Model (Pretrained) Internal Features!! Input C (Complete Data) Transformer Encoder T Teacher Prediction y_! Input M (Missing Data) Prediction Loss (y s'Avs Total Loss A Knowledge Distillation (Student B) Knowledge Distillation (Student A) Feature Alignment (Avs Backpropagation Total Loss B Backpropagation Prediction Loss (y "B vs y_0) Student ModeA (Handles MissingInput) Transformer Encoder S_A Ground Truth RUL RULLabels Student A Prediction y "A Student Model B (Handles Missing Labels) Transformer Encoder S B Student B Prediction y_s^8 Final Output Final RUL Prediction (y_s)
Ds-
S₁
S2
S3
D₁
T₁
Encoder Output
(shifted right)
Output
Embedding
Input
Embedding
Attention
Muti-Head Add &
Norm
Feed
Forward
Add &
Norm
Muti-Head Add &
Attention Norm
Encoder #N
Muti-Head Add &
Attention
Norm
Feed
Forward
Add &
Norm
Decoder #N
Linear
T₁
S₁
T₁
S₁
S₂
S3
Linear
Кт VT
Qs Vs Ks
Cross Adaptive Layer
Sigmoid
Muti-Head
Cross Attention
Muti-Head
Attention
Add & Norm
Add & Norm
S₂
ypred
T₁
S₁
S₁
LMMD
LMSE
Feed Forward
Feed Forward
Ldistillation
S3
Ylabel
Add & Norm
Add & Norm
ΤΙ
S₁
Cross Adaptive Layer
|Ltotal = arg min (WaLdistillation+ WMLMMD + W,Lregression)
Fig. 6. Architecture of the proposed MSCATN.
Transcribed Image Text:Ds- S₁ S2 S3 D₁ T₁ Encoder Output (shifted right) Output Embedding Input Embedding Attention Muti-Head Add & Norm Feed Forward Add & Norm Muti-Head Add & Attention Norm Encoder #N Muti-Head Add & Attention Norm Feed Forward Add & Norm Decoder #N Linear T₁ S₁ T₁ S₁ S₂ S3 Linear Кт VT Qs Vs Ks Cross Adaptive Layer Sigmoid Muti-Head Cross Attention Muti-Head Attention Add & Norm Add & Norm S₂ ypred T₁ S₁ S₁ LMMD LMSE Feed Forward Feed Forward Ldistillation S3 Ylabel Add & Norm Add & Norm ΤΙ S₁ Cross Adaptive Layer |Ltotal = arg min (WaLdistillation+ WMLMMD + W,Lregression) Fig. 6. Architecture of the proposed MSCATN.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Systems Architecture
Systems Architecture
Computer Science
ISBN:
9781305080195
Author:
Stephen D. Burd
Publisher:
Cengage Learning
Information Technology Project Management
Information Technology Project Management
Computer Science
ISBN:
9781337101356
Author:
Kathy Schwalbe
Publisher:
Cengage Learning
Np Ms Office 365/Excel 2016 I Ntermed
Np Ms Office 365/Excel 2016 I Ntermed
Computer Science
ISBN:
9781337508841
Author:
Carey
Publisher:
Cengage
Management Of Information Security
Management Of Information Security
Computer Science
ISBN:
9781337405713
Author:
WHITMAN, Michael.
Publisher:
Cengage Learning,
Fundamentals of Information Systems
Fundamentals of Information Systems
Computer Science
ISBN:
9781305082168
Author:
Ralph Stair, George Reynolds
Publisher:
Cengage Learning
Principles of Information Systems (MindTap Course…
Principles of Information Systems (MindTap Course…
Computer Science
ISBN:
9781285867168
Author:
Ralph Stair, George Reynolds
Publisher:
Cengage Learning