S₁ Ds S₂ S3 D₁ Ꭲ, | Encoder Output (shifted right) Output 0.0 00 Input Embedding Muti-Head Add & Attention Norm Feed Forward Add & Norm Encoder #N| Muti-Head Add & Attention Norm Muti-Head Attention Add & Norm Forward Feed Add & Norm Decoder #N Linear 00 T₁ S₁ T₁ S₁ S₂ S3 Linear Кт VT Qs Vs Ks Cross Adaptive Layer Sigmoid Muti-Head Cross Attention Add & Norm Muti-Head Attention Add & Norm ypred T₁ S₁ S₁ LMMD LMSE Feed Forward Add & Norm Feed Forward Add & Norm Ldistillation Y label T1 S₁ Cross Adaptive Layer | Ltotal = arg min (waLdistillation+ WMLMMD + W,Lregression) Fig. 6. Architecture of the proposed MSCATN. 7

C++ Programming: From Problem Analysis to Program Design
8th Edition
ISBN:9781337102087
Author:D. S. Malik
Publisher:D. S. Malik
Chapter18: Stacks And Queues
Section: Chapter Questions
Problem 11SA
icon
Related questions
Question

Please provide me with the output  image of both of them . below are the diagrams code

 make sure to update the code and mentionned clearly each section also the digram should be clearly describe like in the attached image. please do not provide the same answer like in other question . I repost this question because it does not satisfy the requirment I need in terms of clarifty the output of both code are not very well details 

I have two diagram :

first diagram code 

graph LR subgraph Teacher Model (Pretrained) Input_Teacher[Input C (Complete Data)] --> Teacher_Encoder[Transformer Encoder T] Teacher_Encoder --> Teacher_Prediction[Teacher Prediction y_T] Teacher_Encoder --> Teacher_Features[Internal Features F_T] end subgraph Student_A_Model[Student Model A (Handles Missing Values)] Input_Student_A[Input M (Data with Missing Values)] --> Student_A_Encoder[Transformer Encoder E_A] Student_A_Encoder --> Student_A_Prediction[Student A Prediction y_A] Student_A_Encoder --> Student_A_Features[Student A Features F_A] end subgraph Knowledge_Distillation_A [Knowledge Distillation (Student A)] Teacher_Prediction -- Logits Distillation Loss (L_logits_A) --> Total_Loss_A Teacher_Features -- Feature Alignment Loss (L_feature_A) --> Total_Loss_A Ground_Truth_A[Ground Truth y_gt] -- Prediction Loss (L_pred_A) --> Total_Loss_A Total_Loss_A -- Backpropagation --> Student_A_Encoder end Teacher_Prediction -- Logits --> Logits_Distillation_A Teacher_Features -- Features --> Feature_Alignment_A Feature_Alignment_A -- Feature Alignment Loss (L_feature_A) --> Knowledge_Distillation_A Logits_Distillation_A -- Logits Distillation Loss (L_logits_A) --> Knowledge_Distillation_A Ground_Truth_A -- Labels --> Prediction_Loss_A Prediction_Loss_A -- Prediction Loss (L_pred_A) --> Knowledge_Distillation_A style Knowledge_Distillation_A fill:#ccf,stroke:#333,stroke-width:2px style Total_Loss_A fill:#fff,stroke:#333,stroke-width:2px

 

second diagram code :

 

graph LR subgraph Teacher_Model_B [Teacher Model (Pretrained)] Input_Teacher_B[Input C (Complete Data)] --> Teacher_Encoder_B[Transformer Encoder T] Teacher_Encoder_B --> Teacher_Prediction_B[Teacher Prediction y_T] Teacher_Encoder_B --> Teacher_Features_B[Internal Features F_T] end subgraph Student_B_Model [Student Model B (Handles Missing Labels)] Input_Student_B[Input C (Complete Data)] --> Student_B_Encoder[Transformer Encoder E_B] Student_B_Encoder --> Student_B_Prediction[Student B Prediction y_B] end subgraph Knowledge_Distillation_B [Knowledge Distillation (Student B)] Teacher_Prediction_B -- Logits Distillation Loss (L_logits_B) --> Total_Loss_B Teacher_Features_B -- Feature Alignment Loss (L_feature_B) --> Total_Loss_B Partial_Labels_B[Partial Labels y_p] -- Prediction Loss (L_pred_B) --> Total_Loss_B Total_Loss_B -- Backpropagation --> Student_B_Encoder end Teacher_Prediction_B -- Logits --> Logits_Distillation_B Teacher_Features_B -- Features --> Feature_Alignment_B Feature_Alignment_B -- Feature Alignment Loss (L_feature_B) --> Knowledge_Distillation_B Logits_Distillation_B -- Logits Distillation Loss (L_logits_B) --> Knowledge_Distillation_B Partial_Labels_B -- Available Labels --> Prediction_Loss_B Prediction_Loss_B -- Prediction Loss (L_pred_B) --> Knowledge_Distillation_B style Knowledge_Distillation_B fill:#aed,stroke:#333,stroke-width:2px style Total_Loss_B fill:#fff,stroke:#333,stroke-width:2px

 

 

Please provide me with the output in image of both of them 

S₁
Ds
S₂
S3
D₁
Ꭲ,
| Encoder Output
(shifted right)
Output
0.0
00
Input
Embedding
Muti-Head Add &
Attention
Norm
Feed
Forward
Add &
Norm
Encoder #N|
Muti-Head
Add &
Attention Norm
Muti-Head
Attention
Add &
Norm Forward
Feed
Add &
Norm
Decoder #N
Linear
00
T₁
S₁
T₁
S₁
S₂ S3
Linear
Кт VT
Qs Vs Ks
Cross Adaptive Layer
Sigmoid
Muti-Head
Cross Attention
Add & Norm
Muti-Head
Attention
Add & Norm
ypred
T₁
S₁
S₁
LMMD
LMSE
Feed Forward
Add & Norm
Feed Forward
Add & Norm
Ldistillation
Y label
T1
S₁
Cross Adaptive Layer
| Ltotal = arg min (waLdistillation+ WMLMMD + W,Lregression)
Fig. 6. Architecture of the proposed MSCATN.
7
Transcribed Image Text:S₁ Ds S₂ S3 D₁ Ꭲ, | Encoder Output (shifted right) Output 0.0 00 Input Embedding Muti-Head Add & Attention Norm Feed Forward Add & Norm Encoder #N| Muti-Head Add & Attention Norm Muti-Head Attention Add & Norm Forward Feed Add & Norm Decoder #N Linear 00 T₁ S₁ T₁ S₁ S₂ S3 Linear Кт VT Qs Vs Ks Cross Adaptive Layer Sigmoid Muti-Head Cross Attention Add & Norm Muti-Head Attention Add & Norm ypred T₁ S₁ S₁ LMMD LMSE Feed Forward Add & Norm Feed Forward Add & Norm Ldistillation Y label T1 S₁ Cross Adaptive Layer | Ltotal = arg min (waLdistillation+ WMLMMD + W,Lregression) Fig. 6. Architecture of the proposed MSCATN. 7
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
Recommended textbooks for you
C++ Programming: From Problem Analysis to Program…
C++ Programming: From Problem Analysis to Program…
Computer Science
ISBN:
9781337102087
Author:
D. S. Malik
Publisher:
Cengage Learning
Systems Architecture
Systems Architecture
Computer Science
ISBN:
9781305080195
Author:
Stephen D. Burd
Publisher:
Cengage Learning
Programming Logic & Design Comprehensive
Programming Logic & Design Comprehensive
Computer Science
ISBN:
9781337669405
Author:
FARRELL
Publisher:
Cengage
C++ for Engineers and Scientists
C++ for Engineers and Scientists
Computer Science
ISBN:
9781133187844
Author:
Bronson, Gary J.
Publisher:
Course Technology Ptr
Microsoft Visual C#
Microsoft Visual C#
Computer Science
ISBN:
9781337102100
Author:
Joyce, Farrell.
Publisher:
Cengage Learning,
COMPREHENSIVE MICROSOFT OFFICE 365 EXCE
COMPREHENSIVE MICROSOFT OFFICE 365 EXCE
Computer Science
ISBN:
9780357392676
Author:
FREUND, Steven
Publisher:
CENGAGE L