Please provide me with the output  image of both of them . below are the diagrams code I have two diagram : first diagram code  graph LR subgraph Teacher Model (Pretrained) Input_Teacher[Input C (Complete Data)] --> Teacher_Encoder[Transformer Encoder T] Teacher_Encoder --> Teacher_Prediction[Teacher Prediction y_T] Teacher_Encoder --> Teacher_Features[Internal Features F_T] end subgraph Student_A_Model[Student Model A (Handles Missing Values)] Input_Student_A[Input M (Data with Missing Values)] --> Student_A_Encoder[Transformer Encoder E_A] Student_A_Encoder --> Student_A_Prediction[Student A Prediction y_A] Student_A_Encoder --> Student_A_Features[Student A Features F_A] end subgraph Knowledge_Distillation_A [Knowledge Distillation (Student A)] Teacher_Prediction -- Logits Distillation Loss (L_logits_A) --> Total_Loss_A Teacher_Features -- Feature Alignment Loss (L_feature_A) --> Total_Loss_A Ground_Truth_A[Ground Truth y_gt] -- Prediction Loss (L_pred_A) --> Total_Loss_A Total_Loss_A -- Backpropagation --> Student_A_Encoder end Teacher_Prediction -- Logits --> Logits_Distillation_A Teacher_Features -- Features --> Feature_Alignment_A Feature_Alignment_A -- Feature Alignment Loss (L_feature_A) --> Knowledge_Distillation_A Logits_Distillation_A -- Logits Distillation Loss (L_logits_A) --> Knowledge_Distillation_A Ground_Truth_A -- Labels --> Prediction_Loss_A Prediction_Loss_A -- Prediction Loss (L_pred_A) --> Knowledge_Distillation_A style Knowledge_Distillation_A fill:#ccf,stroke:#333,stroke-width:2px style Total_Loss_A fill:#fff,stroke:#333,stroke-width:2px   second diagram code :   graph LR subgraph Teacher_Model_B [Teacher Model (Pretrained)] Input_Teacher_B[Input C (Complete Data)] --> Teacher_Encoder_B[Transformer Encoder T] Teacher_Encoder_B --> Teacher_Prediction_B[Teacher Prediction y_T] Teacher_Encoder_B --> Teacher_Features_B[Internal Features F_T] end subgraph Student_B_Model [Student Model B (Handles Missing Labels)] Input_Student_B[Input C (Complete Data)] --> Student_B_Encoder[Transformer Encoder E_B] Student_B_Encoder --> Student_B_Prediction[Student B Prediction y_B] end subgraph Knowledge_Distillation_B [Knowledge Distillation (Student B)] Teacher_Prediction_B -- Logits Distillation Loss (L_logits_B) --> Total_Loss_B Teacher_Features_B -- Feature Alignment Loss (L_feature_B) --> Total_Loss_B Partial_Labels_B[Partial Labels y_p] -- Prediction Loss (L_pred_B) --> Total_Loss_B Total_Loss_B -- Backpropagation --> Student_B_Encoder end Teacher_Prediction_B -- Logits --> Logits_Distillation_B Teacher_Features_B -- Features --> Feature_Alignment_B Feature_Alignment_B -- Feature Alignment Loss (L_feature_B) --> Knowledge_Distillation_B Logits_Distillation_B -- Logits Distillation Loss (L_logits_B) --> Knowledge_Distillation_B Partial_Labels_B -- Available Labels --> Prediction_Loss_B Prediction_Loss_B -- Prediction Loss (L_pred_B) --> Knowledge_Distillation_B style Knowledge_Distillation_B fill:#aed,stroke:#333,stroke-width:2px style Total_Loss_B fill:#fff,stroke:#333,stroke-width:2px     Please provide me with the output in image of both of them

CMPTR
3rd Edition
ISBN:9781337681872
Author:PINARD
Publisher:PINARD
Chapter21: Enhancing A Presentation
Section: Chapter Questions
Problem 6QY
icon
Related questions
Question

Please provide me with the output  image of both of them . below are the diagrams code

I have two diagram :

first diagram code 

graph LR subgraph Teacher Model (Pretrained) Input_Teacher[Input C (Complete Data)] --> Teacher_Encoder[Transformer Encoder T] Teacher_Encoder --> Teacher_Prediction[Teacher Prediction y_T] Teacher_Encoder --> Teacher_Features[Internal Features F_T] end subgraph Student_A_Model[Student Model A (Handles Missing Values)] Input_Student_A[Input M (Data with Missing Values)] --> Student_A_Encoder[Transformer Encoder E_A] Student_A_Encoder --> Student_A_Prediction[Student A Prediction y_A] Student_A_Encoder --> Student_A_Features[Student A Features F_A] end subgraph Knowledge_Distillation_A [Knowledge Distillation (Student A)] Teacher_Prediction -- Logits Distillation Loss (L_logits_A) --> Total_Loss_A Teacher_Features -- Feature Alignment Loss (L_feature_A) --> Total_Loss_A Ground_Truth_A[Ground Truth y_gt] -- Prediction Loss (L_pred_A) --> Total_Loss_A Total_Loss_A -- Backpropagation --> Student_A_Encoder end Teacher_Prediction -- Logits --> Logits_Distillation_A Teacher_Features -- Features --> Feature_Alignment_A Feature_Alignment_A -- Feature Alignment Loss (L_feature_A) --> Knowledge_Distillation_A Logits_Distillation_A -- Logits Distillation Loss (L_logits_A) --> Knowledge_Distillation_A Ground_Truth_A -- Labels --> Prediction_Loss_A Prediction_Loss_A -- Prediction Loss (L_pred_A) --> Knowledge_Distillation_A style Knowledge_Distillation_A fill:#ccf,stroke:#333,stroke-width:2px style Total_Loss_A fill:#fff,stroke:#333,stroke-width:2px

 

second diagram code :

 

graph LR subgraph Teacher_Model_B [Teacher Model (Pretrained)] Input_Teacher_B[Input C (Complete Data)] --> Teacher_Encoder_B[Transformer Encoder T] Teacher_Encoder_B --> Teacher_Prediction_B[Teacher Prediction y_T] Teacher_Encoder_B --> Teacher_Features_B[Internal Features F_T] end subgraph Student_B_Model [Student Model B (Handles Missing Labels)] Input_Student_B[Input C (Complete Data)] --> Student_B_Encoder[Transformer Encoder E_B] Student_B_Encoder --> Student_B_Prediction[Student B Prediction y_B] end subgraph Knowledge_Distillation_B [Knowledge Distillation (Student B)] Teacher_Prediction_B -- Logits Distillation Loss (L_logits_B) --> Total_Loss_B Teacher_Features_B -- Feature Alignment Loss (L_feature_B) --> Total_Loss_B Partial_Labels_B[Partial Labels y_p] -- Prediction Loss (L_pred_B) --> Total_Loss_B Total_Loss_B -- Backpropagation --> Student_B_Encoder end Teacher_Prediction_B -- Logits --> Logits_Distillation_B Teacher_Features_B -- Features --> Feature_Alignment_B Feature_Alignment_B -- Feature Alignment Loss (L_feature_B) --> Knowledge_Distillation_B Logits_Distillation_B -- Logits Distillation Loss (L_logits_B) --> Knowledge_Distillation_B Partial_Labels_B -- Available Labels --> Prediction_Loss_B Prediction_Loss_B -- Prediction Loss (L_pred_B) --> Knowledge_Distillation_B style Knowledge_Distillation_B fill:#aed,stroke:#333,stroke-width:2px style Total_Loss_B fill:#fff,stroke:#333,stroke-width:2px

 

 

Please provide me with the output in image of both of them 

Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
CMPTR
CMPTR
Computer Science
ISBN:
9781337681872
Author:
PINARD
Publisher:
Cengage
Principles of Information Systems (MindTap Course…
Principles of Information Systems (MindTap Course…
Computer Science
ISBN:
9781305971776
Author:
Ralph Stair, George Reynolds
Publisher:
Cengage Learning
Principles of Information Systems (MindTap Course…
Principles of Information Systems (MindTap Course…
Computer Science
ISBN:
9781285867168
Author:
Ralph Stair, George Reynolds
Publisher:
Cengage Learning
Np Ms Office 365/Excel 2016 I Ntermed
Np Ms Office 365/Excel 2016 I Ntermed
Computer Science
ISBN:
9781337508841
Author:
Carey
Publisher:
Cengage
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781305627482
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781285196145
Author:
Steven, Steven Morris, Carlos Coronel, Carlos, Coronel, Carlos; Morris, Carlos Coronel and Steven Morris, Carlos Coronel; Steven Morris, Steven Morris; Carlos Coronel
Publisher:
Cengage Learning