Consider a three-phase generator rated 3 00 MVA , 23 kV , supplying a system load of 240 MA and 0.9 power factor lagging at 230 kV through a 33 0 MVA , 23 Δ / 23 0 Y-kV step-up transformer with a leakage reactance of 0.11 per unit. (a) Neglecting the exciting current and choosing base values at the load of 100 MVL and 230 kV. Find the phasor currents I A , I B , and I C supplied to the load in per unit. (b) By choosing the load terminal voltage I A as reference, specify the proper base for the generator circuit and determine the generator voltage V as well as the phasor currents I A , I B , and I C , from the generator. ( Note: Take into account the phase shift of the transformer.) (C) Find the generator terminal voltage in kV and the real power supplied by the generator in MW. (d) By omitting the transformer phase shift altogether, check to see whether you get the same magnitude of generator terminal voltage and real power delivered by the generator.
Consider a three-phase generator rated 3 00 MVA , 23 kV , supplying a system load of 240 MA and 0.9 power factor lagging at 230 kV through a 33 0 MVA , 23 Δ / 23 0 Y-kV step-up transformer with a leakage reactance of 0.11 per unit. (a) Neglecting the exciting current and choosing base values at the load of 100 MVL and 230 kV. Find the phasor currents I A , I B , and I C supplied to the load in per unit. (b) By choosing the load terminal voltage I A as reference, specify the proper base for the generator circuit and determine the generator voltage V as well as the phasor currents I A , I B , and I C , from the generator. ( Note: Take into account the phase shift of the transformer.) (C) Find the generator terminal voltage in kV and the real power supplied by the generator in MW. (d) By omitting the transformer phase shift altogether, check to see whether you get the same magnitude of generator terminal voltage and real power delivered by the generator.
Consider a three-phase generator rated
3
00
MVA
,
23 kV
, supplying a system load of 240 MA and 0.9 power factor lagging at 230 kV through a
33
0
MVA
,
23
Δ
/
23
0
Y-kV
step-up transformer with a leakage reactance of 0.11 per unit. (a) Neglecting the exciting current and choosing base values at the load of 100 MVL and 230 kV. Find the phasor currents
I
A
,
I
B
,
and
I
C
supplied to the load in per unit. (b) By choosing the load terminal voltage
I
A
as reference, specify the proper base for the generator circuit and determine the generator voltage V as well as the phasor currents
I
A
,
I
B
,
and
I
C
,
from the generator. (Note: Take into account the phase shift of the transformer.) (C) Find the generator terminal voltage in kV and the real power supplied by the generator in MW. (d) By omitting the transformer phase shift altogether, check to see whether you get the same magnitude of generator terminal voltage and real power delivered by the generator.
I need a solution from an expert without artificial
intelligence.
Choose the correct answer:
1. In AMI code, the shapes of "1" and "O" are,
bit dependent, not related to each other).
2. In FDM the guard band is used to
decrease, maintain, not related to).
3. Higher number of levels in PCM produces,
(the same, opposite to each other, next
the overlap between FDM signals. (increase,
(higher quantization error, less number
of bits per sample, lower quantization error, the same number of bits per sample).
Fe
Av
4. If the maximum shift in frequency is 70 kHz and the minimum deviation in frequency of the
actual signal is 109.93 MHz, what is the carrier frequency? (110 MHz, 110 kHz, 107 kHz,
102 MHz)
5. TDM of signals requires them to have the same
amplitude, sampling frequency, energy).
6. In standard AM, the last step in the transmitter is
subtracting, multiplying, dividing).
. In digital carrier systems,
PSK).
(maximum frequency, maximum
the carrier signal. (adding,
has higher bandwidth.…
Need Handwritten step by step solution. Do not use chatgpt or AI
A linear electrical load draws 11 A at a 0.72 lagging power factor./1 153. When a capacitor is connected, the line current dropped to 122 A and the power factor
improved to 0.98 lagging. Supply frequency is 50 Hz.
a. Let the current drawn from the source before and after introduction of the capacitor be 11 and 12
respectively. Take the source voltage as the reference and express 11 and 12 as vector
quantities in polar form.
b. Obtain the capacitor current, IC = 12 - 11, graphically as well as using complex number
manipulation. Compare the results.
c. Express the waveforms of the source current before (11(t)) and after (12(t)) introduction of the
capacitor in the form Im sin(2лft + 0). Hand sketch them on the same graph. Clearly label your
plots.
d. Analytically solve i2(t) – i1(t) using the theories of trigonometry to obtain the capacitor current
in the form, ¡C(t) = ICm sin(2πft + OC). Compare the result with the result in Part b.
Chapter 3 Solutions
Power System Analysis and Design (MindTap Course List)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
How does a Transformer work - Working Principle electrical engineering; Author: The Engineering Mindset;https://www.youtube.com/watch?v=UchitHGF4n8;License: Standard Youtube License