Concept explainers
Interpretation: The mole percent of alcohol analyzed by the ‘breath analyzer’ wherein 4.2 mg of potassium dichromate is oxidized from breath of 0.500 L at 30(C and 750 mm Hg needs to be determined.
Concept introduction:
Number of moles of a substance is related to mass and molar mass as follows:
Here, m is mass and M is molar mass.
Answer to Problem 155AE
The mole percent of alcohol analyzed by breath analyzer is 0.11%
Explanation of Solution
The reaction of ethyl alcohol oxidized by dichromate ion giving acetic acid and chromium (III) is as follows:
But it is known that,
Given Mass of
Observing equation (i), it can be seen that 3 moles of ethyl alcohol is oxidized by 2 moles of potassium dichromate. This will help to calculate the number of moles of alcohol oxidized as given below
From
Where V = 0.50 L
P = 750 mm Hg = 0.98 atm
R = 0.082 L.atm /mol K
T = 30 + 273 K= 303 K
The mole percent of alcohol analyzed by the ‘breath analyzer’ is 0.11% when 4.2mg of Potassium dichromate is oxidized from breath of 0.500L at 30(C and 750mm Hg.
Want to see more full solutions like this?
Chapter 21 Solutions
Chemical Principles
- Silicon is produced for the chemical and electronics industries by the following reactions. Give the balanced equation for each reaction. a. SiO2(s)+C(s)arefurnaceElectricSi(s)+CO(g) b. Liquid silicon tetrachloride is reacted with very pure solid magnesium, producing solid silicon and solid magnesium chloride. c. Na2SiF6(s) + Na(s) Si(s) + NaF(s)arrow_forwardWrite a balanced equation for the reaction of hydroiodic acid, HI, with calcium hydroxide, Ca(OH)2. Then, write the balanced complete ionic equation and the net ionic equation for this neutralization reaction.arrow_forwardExperiments show that propionic acid (CH3CH2COOH) is a weak acid. Write the chemical equation.arrow_forward
- Nitric acid is produced commercially by the Ostwald process, represented by the following equations: 4NH3(g)+5O24NO(g)+6H2O(g)2NO(g)+O2(g)2NO2(g)3NO2(g)+H2O(l)2HNO3(aq)+NO(g) What mass of NH3 must be used to produce 1.0 106 kg HNO3 by the Ostwald process? Assume 100% yield in each reaction, and assume that the NO produced in the third step is not recycled.arrow_forwardYou take 1.00 g of an aspirin tablet (a compound consisting solely of carbon, hydrogen, and oxygen), burn it in air, and collect 2.20 g CO2 and 0.400 g H2O. You know that the molar mass of aspirin is between 170 and 190 g/mol. Reacting 1 mole of salicylic acid with I mole of acetic anhydride (C4H6O3) gives you 1 mole of aspirin and 1 mole of acetic acid (C2H4O2). Use this information to determine the molecular formula of salicylic acid.arrow_forwardA solution of scandium chloride was treated with silver nitrate. The chlorine in the scandium compound was converted to silver chloride, AgCl. A 58.9-mg sample of scandium chloride gave 167.4 mg of silver chloride. What are the mass percentages of Sc and Cl in scandium chloride? What is its empirical formula?arrow_forward
- You are given a solid mixture of NaNO2 and NaCl and are asked to analyze it for the amount of NaNO2 present. To do so, you allow the mixture to react with sulfamic acid, HSO3NH2, in water according to the equation NaNO2(aq) + HSO3NH2(aq) NaHSO4(aq) + H2O() + N2(g) What is the weight percentage of NaNO2 in 1.232 g of the solid mixture if reaction with sulfa-mic acid produces 295 mL of dry N2 gas with a pressure of 713 mm Hg at 21.0 C?arrow_forwardBoron forms an extensive series of compounds with hydrogen, all with the general formula BxHy. To analyze one of these compounds, you burn it in air and isolate the boron in the form of B2O3 and the hydrogen in the form of water. You find that 0.1482 g BxHy gives 0.4221 g B2O3 when burned in excess O2. Determine the empirical I formula of BxHy.arrow_forwardEthanol, C2H5OH, is a gasoline additive that can be produced by fermentation of glucose. C6H12O62C2H5OH+2CO2 (a) Calculate the mass (g) of ethanol produced by the fermentation of 1.000 lb glucose. (b) Gasohol is a mixture of 10.00 mL ethanol per 90.00 mL gasoline. Calculate the mass (in g) of glucose required to produce the ethanol in 1.00 gal gasohol. Density of ethanol = 0.785 g/mL. (c) By 2022, the U. S. Energy Independence and Security Act calls for annual production of 3.6 1010 gal of ethanol, no more than 40% of it produced by fermentation of corn. Fermentation of 1 ton (2.2 103 lb) of corn yields approximately 106 gal of ethanol. The average corn yield in the United States is about 2.1 105 lb per 1.0 105 m2. Calculate the acreage (in m2) required to raise corn solely for ethanol production in 2022 in the United States.arrow_forward
- 1. Sometimes a reaction can fall in more than one category. Into what category (or categories) does the reaction of Ba(OH)2(aq) + H+PO4(aq) fit? acid-base and oxidation-reduction oxidation-reduction acid-base and precipitation precipitationarrow_forwardThe carbon dioxide exhaled in the breath of astronauts is often removed from the spacecraft by reaction with lithium hydroxide 2LiOH(s)+CO2(g)Li2CO3(s)+H2O(l) Estimate the grams of lithium hydroxide required per astronaut per day. Assume that each astronaut requires 2.50 103 kcal of energy per day. Further assume that this energy can be equated to the heat of combustion of a quantity of glucose, C6H12O6, to CO2(g) and H2O(l). From the amount of glucose required to give 2.50 103 kcal of heat, calculate the amount of CO2 produced and hence the amount of LiOH required. The H for glucose(s) is 1273 kJ/mol.arrow_forwardCisplatin, Pt(NH3)2Cl2, a drug used in the treatment of cancer, can be made by the reaction of K2PtCl4 with ammonia, NH3. Besides cisplatin, the other product is KCl. (a) Write a balanced equation for this reaction. (b) To obtain 2.50 g cisplatin, calculate what masses (in grams) of K2PtCl4 and ammonia you need.arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning